
Contents
Introduction

Preliminaries

Mathematical Preliminaries

Finite Automaton

Non Deterministic Finite Automata

Equivalence of DFA and NDFA

Constructing required DFA

Finite Automata with Output

Transforming Mealy machine into Moore machine

Transforming Moore machine into Mealy machine

Minimization of Finite Automata

Formal Grammar

Chomsky Classification of Languages

Regular Expression

Regular Language

Identities for Regular Expression

NFA with null moves

Contents

Automata and Regular Expression

State Elimination method

Elimination of ϵ moves

Conversion of null moves NFA to DFA

Arden’s Theorem

Conversion of RE to DFA

Two way finite automata

Pumping Lemma for Regular Sets

CFG: Formal Definition

Derivation and Syntax Trees

Ambiguous Grammar

Simplification Forms

Properties of CFL

Normal Forms (CNF and GNF)

Pumping Lemma for Context Free Language

Decision Algorithms

Contents

Linear Grammar

Pushdown Automata

Relationship between PDA and CFL

The Turing Machine Model

Representation of Turing Machines

Language acceptability of Turing Machine

Design of TM

Variation of TM

Universal TM

Church’s Machine

Recursive and Recursively Enumerable Language

Unrestricted Grammars

Context Sensitive Language

Linear Bounded Automata

Construction of Grammar Corresponding to TM

Construction of Grammar Corresponding to LBA

Contents

CYK Algorithm

Turing machine halting Problem

Post correspondence problems (PCP)

Modified Post correspondence problems

Partial and Total Functions

Primitive Recursive functions

Recursive functions

References

Theory of Computation: Introduction

▶ Theory of Computation is the branch of Computer Science
which deals with how efficiently problems can be solved on
model of computation using an algorithm

▶ The domain is further classified into 3 sub-domains:
▶ Automata theory and languages
▶ Computability theory
▶ Complexity theory

Preliminaries

▶ Propositions (or Statements)
▶ Connectives (Propositional connectives or Logical connectives)

▶ NOT (Negation)¬P
▶ AND (Conjunction) P ∧ Q
▶ OR (Disjunction) P ∨ Q
▶ If.. Then... (Implication)
▶ If and only If

▶ Tautology- A tautology or a universally true formula is a well
defined formula whose truth value is T for all possible
assignments of truth values to the propositional variables.
Example-P ∨ ¬P

▶ Contradiction- A contradiction (or absurdity) is well formed
formula whose truth value is F for all possible assignments of
truth values to propostion variables.
Example-P ∧ ¬P

▶ Equivalence

Preliminaries

▶ Equivalence- Two well formed α and β in propositional
variables P1,P2,Pn are equivalent (or logically equivalent)
if the formula α↔ β is a tautology.

Example

(P =⇒ (Q ∨ R)) ≡ ((P =⇒ Q) ∨ (P =⇒ R))

Preliminaries

▶ Logical Identities
▶ Idempotent laws- P ∨ P ≡ P, P ∧ P ≡ P
▶ Commutative laws- P ∨ Q ≡ Q ∨ P, P ∧ Q ≡ Q ∧ P
▶ Associative laws- P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R

P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R
▶ Distributive laws- P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
▶ Absorption laws- P ∧ (P ∨ Q) ≡ P

P ∨ (P ∧ Q) ≡ P
▶ De-morgan’s Laws- ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬(P ∧ Q) ≡ ¬P ∨ ¬Q
▶ Contrapositive- P ⇒ Q ≡ ¬Q ⇒ ¬P

P ⇒ Q ≡ ¬P ∨ Q
▶ Double negation- P ≡ ¬(¬P)

Questions

▶ Show that:
(P ∧ Q) ∨ (P ∧ ¬Q) ≡ P

▶ Show that:
(P =⇒ Q) ∧ (R =⇒ Q) ≡ (P ∨ R) =⇒ Q

Mathematical Preliminaries

Set:
▶ A set is well defined collection of objects.

Example-Set of all students in ASET,
Collection of all books in library.

▶ Individual objects are called Members or Elements of the
set.

▶ Capital letter usually represent Set such as A,B,C,...
▶ Small letters represent Elements of any set such as a,b,c,....
▶ If a is an element of set A =⇒ a ∈ A
▶ Ways of describing set

▶ Listing its element with no repetition
Example: {15, 30, 45, 60, 75, 90}

▶ Describing properties of elements of set
Example: {n | nisapositiveintegerdivisibleby15andlessthan100}

▶ By recursion
Example: Set of all natural numers leaving remainder 1 when
divided by 3 can be written as
{an | a0 = 1, an+1 = an + 3}

Mathematical Preliminaries

Subsets and Operations on Sets

▶ A set A is said to be subset of B i.e. (A ⊆ B), if every
element of A is also an element of B.

▶ If two sets A and B are equal i.e. (A = B)
=⇒ A ⊆ B and B ⊆ A.

▶ Empty set: A set with no elements.
▶ Operations on sets:

▶ A ∪ B: {x | x ∈ A or x ∈ B} called union of A and B.
▶ A ∩ B: {x | x ∈ A and x ∈ B} called intersection of A and B.
▶ A− B: {x | x ∈ A and x /∈ B} called complement of B in A.

Mathematical Preliminaries

Graph
▶ A graph (or undirected graph) consists of:

▶ a non-empty set V of vertices
▶ a set E called set of edges.
▶ a map ϕ which assigns to every edge a unique unordered pair

of vertices.
▶ A directed graph or (digraph) consists of

▶ a non-empty set V of vertices
▶ a set E called set of edges
▶ a map ϕ which assigns to every edge a unique ordered pair of

vertices.

Mathematical Preliminaries

Tree

▶ A graph is called a tree if it is connected and has no circuits

▶ Properties of tree:
▶ A tree is connected graph with no circuits or loops
▶ there is one and only one path between every pair of vertices.
▶ if a connected graph has n vertices =⇒ has n − 1 edges,

implies a tree

Automata

▶ Automata is defined as a system where energy, material and
information are transformed, transmitted and used for
performing some function without direct human participation.

▶ Example: Automatic machine tools, automatic packing
machines, automatic photoprinting machines

Figure: Automatic machine tools Figure: Automatic photoprinting
machine

Discrete Automata

▶ Model of discrete automaton:

Figure: Model of a discrete automaton

▶ Characteristics of Automata
▶ Input-At a discrete instant of time t1, t2,tm, input values

I1, I2....Ip take finite number of fixed values from input
alphabet Σ are applied as input to model.

▶ Output- O1,O2, ...Oq are output of model, each of which can
take finite number of fixed values from an Output.

▶ States- At any instant of time, the automaton can be in one of
the states q1, q2, ...qn

▶ State relation- The next state of an automaton at any instant
of time is determined by present state and present input.

▶ Output relation- On reading an input symbol, automaton
moves to next state which is given by state relation.

Discrete Automata

▶ Automaton without Memory:An automata in which the
output depends only on input.

▶ Automaton with finite Memory: An automaton in which the
output depends on states as well as input.
▶ Moore Machine: An automaton in which the output depends

only on states of machine.
▶ Mealy Machine: An automaton in which output depends on

the state as well as on the input at any instant of time.

Discrete Automata

Any sequential machine behaviour can be represented by an
automaton.

Example: Consider a 4-bit serial shift register as a finite state
machine.

▶ 24 = 16 states (0000, 0001,, 1111)

▶ 1 serial Input and 1 serial output

▶ Input alphabet, Σ = {0,1}
▶ Can be represented as

▶ Here, output depends on both Input and state ∴ Mealy machine.

Finite Automaton

▶ A finite automaton can be represented by a finite 5-tuple
(Q,Σ, δ, q0,F), where:
▶ Q is a finite non-empty set of states.
▶ Σ is a finite non-empty set of inputs called Input alphabet.
▶ δ is a function which maps Q × Σ → Q called Direct

transition function
It describes change of states during transition.
It is represented by transition table \ diagram.

▶ q0 ∈ Q is Initial state
▶ F ⊆ Q is the set of Final states

▶ The transition function which maps Q × Σ∗ into Q is called
Indirect transition function.

Finite Automata

Figure: Block diagram of Finite Automata

▶ Input tape: Each square contains a single symbol from input
alphabet Σ.
▶ ∁ and $ are end markers of Tape
▶ Absence of end markers indicates that the tape is of infinite

length
▶ Reading Head: Examines only 1 □ at a time

▶ can move from Left → Right or Right → Left
▶ Finite Control: Input to a finite control will usually be a

symbol under read head.
Following Outputs:
▶ A motion to R-head along the tape on next □
▶ Next state of the finite state machine given by δ(q, a)

Transition Systems

▶ A transition system or transition graph is finite directed
labelled graph in which each vertex (node) is represented by a
state and edges are labelled with input/output.

▶ A transition system is a 5-tuple (Q,Σ, δ, Q0, F)
where:
▶ Q, Σ, F are finite non-empty set of states, input alphabet and

set of final states respectively.
▶ Q0 ⊆ Q and is non-empty
▶ δ is a finite subset of Q × Σ∗ × Q

Transition system

▶ A transition system accepts a string w in Σ∗ if:
▶ There exists a path which originates from some initial state,

goes along the arrows and terminates at some final state, and
▶ The path value obtained by concatenation of all edge-labels of

the path is equal to w

Example
Consider the given transition system:

Determine the initial states, final states and acceptability of 101011,
111010.
Initial states:q0 and q1; Final State:q3
Path value q0q0q2q3 for 101011 =⇒ accepted by system
But, 111010 not accepted

Transition function

▶ Every finite automaton (Q, Σ, δ, q0, F) can be viewd as a
transition system (Q, Σ, δ’,Q0,F) if we take Q0= {q0} and
δ′={(q,w,δ(q,w))| q ∈ Q, w ∈ Σ∗}

▶ But, a transition system need not be a finite automaton.

▶ Example: A transition system may contain more than one
initial state.

▶ Properties of Transition Functions:
1. δ(q,∧) = q is a finite automaton

=⇒ State of the system can be changed only by an input
symbol.

2. For all strings w and input symbol a:
δ(q, aw)= δ(δ(q, a),w)
δ(q,wa)= δ(δ(q,w), a)

Exercise:
Prove that for any transition function δ and for any two input
string x and y
δ(q, xy)=δ(δ(q, x), y)

Acceptability of a String by a finite automaton

▶ A string ’x’ is accepted by a finite automaton M = (Q, Σ, δ, q0, F)
if δ(q0, x)= q for some q ∈ F

Example
Consider the finite state machine whose transition function δ is given below in form of
a transition table. Here, Q={q0, q1, q2, q3}, Σ = {0, 1}, F = {q0}.
Give the entire sequence of states for the input string 110101.

Input
State 0 1
→q0O q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

Answer: δ(q0, 110101)= δ(q1, 10101)
= δ(q0, 0101)
= δ(q2, 101)
= δ(q3, 01)
= δ(q1, 1)
= δ(q0,∧)
=q0

Hence, q0
1−→ q1

1−→ q0
0−→ q2

1−→ q3
0−→ q1

1−→ q0 Accepted

Non-Deterministic Finite State Machines

▶ A non-deterministic finite automaton (NDFA) is a 5-tuple
(Q,Σ, δ, q0,F) where
Q is a finite non-empty set of states
Σ is a finite non-empty set of inputs
δ is a transition function mapping from Q × Σ into 2Q which
is power set of Q, the set of all subsets of Q
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states.

Non-Deterministic Finite State Machines

▶ Consider a Non-deterministic automaton as under:

Determine the sequence of states for input string 0100

δ(q0, 0100)= {q0, q3, q4}
Since q4 is the final state. ∴ input string 0100 is accepted by the system.

▶ A string w ∈ Σ∗ is accepted by NDFA ”M”. If δ(q0,w) contains some final
state.

Equivalence of DFA and NDFA

▶ A DFA can simulate the behaviour of NDFA by increasing the
number of states

▶ DFA (Q, Σ, δ, q0, F) can be viewed as NDFA (Q, Σ, δ′, q0, F)

▶ Any NDFA is a more general machine without being more
powerful.
=⇒ For every NDFA, there exists a DFA which simulates the
behaviour of NDFA. Alternatively, if L is a set accepted
by NDFA, then there exists a DFA which also accepts L.

Example
Contruct a deterministic automaton equivalent to M=({q0, q1}, {0, 1}, δ, q0, {q0})
where δ is defined as under:

State Input
0 1

→q0O q0 q1
q1 q1 q0,q1

NDFA → DFA

Example 1
Contruct a deterministic automaton equivalent to M=({q0, q1}, {0, 1}, δ, q0, {q0})
where δ is defined as under:

State Input
0 1

→q0O q0 q1
q1 q1 q0,q1

Solution: For the deterministic automaton M1:

▶ The states are subsets of {q0,q1}
=⇒ ϕ, [q0], [q1], [q0, q1]

▶ [q0] is initial state.

▶ [q0] and [q0, q1] are final states as these are the only states containing q0
▶ δ is defined by state table as under:

State Input
0 1

[ϕ] [ϕ] [ϕ]
[q0] [q0] [q1]
[q1] [q1] [q0,q1]

[qo ,q1] [qo ,q1] [qo ,q1]

NDFA → DFA

Example 2
Find a deterministic acceptor equivalent to:
M= ({q0,q1,q2},{a,b}, δ, q0, {q2})
where δ is given by

State Input
a b

→ q0 q0, q1 q2
q1 q0 q1
q2O ϕ q0, q1

Solution: The deterministic automaton M1 equivalent to M is defined as follows:
M1=(2Q ,{a,b}, δ, [q0], F’)
where, F’= {[q2],[q0, q2],[q1, q2],[q0, q1, q2]}

State Input
a b

[q0] [q0, q1] [q2]
[q1] [q0] [q1]
[q2] ϕ [q0, q1]

[q0, q1] [q0, q1] [q1, q2]
[q1, q2] [q0] [q0, q1]

NDFA → DFA

Example 3
Construct a deterministic finite automaton equivalent to
M=({q0, q1, q2, q3},{a,b},δ,q0,{q3})
where δ is as under:

State Input
a b

→ q0 q0, q1 q0
q1 q2 q1
q2 q3 q3
q3O q2

Solution: Let Q = {q0, q1, q2, q3}, then the deterministic automaton M1 equivalent to
M is given by M1=(2Q ,{a,b},δ,[q0],F)
where, F consists of:
{[q3],[q0, q3],[q1, q3],[q2, q3],[q0, q1, q3],[q0, q2, q3],[q1, q2, q3],[q0, q1, q2, q3]}
and δ is defined by state table as under:

State Input
a b

[q0] [qo , q1] [q0]
[q0, q1] [q0, q1, q2] [q0, q1]

[q0, q1, q2] [q0, q1, q2, q3] [q0, q1, q3]
[q0, q1, q3] [q0, q1, q2] [q0, q1, q2]

[q0, q1, q2, q3] [q0, q1, q2, q3] [q0, q1, q2, q3]

NDFA → DFA

1. Construct a DFA equivalent to NDFA ’M’ whose transition
diagram is given as:

2. Construct a DFA equivalent to NDFA with initial state q0
whose transition table is defined as

Constructing required DFA

Example 1

Construct a DFA accepting all strings ’w ’ over {0,1} such that the
number of 1’s in ’w ’ is 3mod4.
Solution: Let the required DFA, as the condition on strings of
T(M) doesn’t at all involve 0,
=⇒ M doesnot change the state on input 0.
If 1 appears in w (4k+3) times, M can come back to initial state,
after reading 4 1’s and to a final state after reading 3 1’s.
The required DFA:

Constructing required DFA

1. Construct a DFA accepting all strings over {a,b} ending in ab.

2. Construct a DFA equivalent to NDFA for:

State Input
0 1 ∧

→ q0 q0, q3 q0, q1
q1 q2
q2 q2 q2 q4
q3 q4
q4O q4 q4

Constructing required DFA

1. M=({q1, q2, q3},{0,1}, δ,q1,{q3}) is a NDFA where δ is given
by:
δ(q1, 0)={q2, q3}
δ(q1, 1)={q1}
δ(q2, 0)={q1, q2}
δ(q2, 1)=ϕ
δ(q3, 0)={q2}
δ(q3, 1)={q1, q2}
Construct equivalent DFA.

Finite Automata with Outputs

▶ Moore Machine is a 6-tuple (Q,Σ, ∆, δ, λ, q0)
where Q is a finite set of states

Σ is the input alphabet
∆ is the output alphabet
δ is the transition function Q × Σ into Q
λ is the output function Q into ∆
q0 is the initial state

Example:
Initial state q0 is marked with an arrow. The table defines δ and λ:

Present Next State Output
State a=0 a=1 λ
→ q0O q3 q1 0
q1 q1 q2 1
q2 q2 q3 0
q3 q3 q0 0

Determine transition states and output string for input string 0111.
Solution: Transition states:

q0
0\0−−→ q3

1\0−−→ q0
1\0−−→ q1

1\1−−→ q2 0
OutputString: 00010

Finite Automata with Outputs

▶ Mealy Machine is a 6-tuple (Q,Σ, ∆, δ, λ, q0)
where Q is a finite set of states

Σ is the input alphabet
∆ is the output alphabet
δ is the transition function Q × Σ into Q
λ is the output function mapping Q ×Σ into ∆
q0 is the initial state

Example:
Consider a mealy machine for q1 as initial state.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

Determine the transition of states and corresponding output string for input string
0011.

Solution: q1
0\0−−→ q3

0\1−−→ q2
1\0−−→ q4

1\0−−→ q3
Output String: 0100

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1
State State Output State Output
→ q1
q20
q21
q3
q40
q41

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q20 0
q20 q1 1 q40 0
q21 q1 1 q40 0
q3 q21 1 q1 1
q40 q41 1 q3 0
q41 q41 1 q3 0

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20
q20 q1 q40
q21 q1 q40
q3 q21 q1
q40 q41 q3
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40
q21 q1 q40
q3 q21 q1
q40 q41 q3
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40
q3 q21 q1
q40 q41 q3
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40 1
q3 q21 q1
q40 q41 q3
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40 1
q3 q21 q1 0
q40 q41 q3
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40 1
q3 q21 q1 0
q40 q41 q3 0
q41 q41 q3

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40 1
q3 q21 q1 0
q40 q41 q3 0
q41 q41 q3 1

Procedure of transforming Mealy machine into Moore machine

▶ Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

▶ Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1 Output
→ q0 q3 q20 0
q1 q3 q20 1
q20 q1 q40 0
q21 q1 q40 1
q3 q21 q1 0
q40 q41 q3 0
q41 q41 q3 1

Procedure of transforming Mealy machine into Moore machine

Convert the given mealy machine into equivalent moore machine

Procedure of transforming Mealy machine into Moore machine

Present a=0 a=1
State state Output State Output
→ q1 q2 Z1 q3 Z1

q2 q2 Z2 q3 Z1

q3 q2 Z1 q3 Z2

q2

q21

q22

q3

q31

q32

Present a=0 a=1
State state Output State Output
q1 q21 Z1 q31 Z1

q21 q22 Z2 q31 Z1

q22 q22 Z2 q31 Z1

q31 q21 Z1 q32 Z2

q32 q21 Z1 q32 Z2

Procedure of transforming Mealy machine into Moore
machine

Present Next State Output
State a=0 a=1
q1 q21 q31
q21 q22 q31 Z1

q22 q22 q31 Z2

q31 q21 q32 Z1

q32 q21 q32 Z2

Procedure of transforming Moore machine into Mealy machine

▶ Consider the moore machine described by the transition table given:

Present Next State Output
State a=0 a=1
→ q1 q1 q2 0
q2 q1 q3 0
q3 q1 q3 1

Construct the corresponding mealy machine.

▶ Solution:

Present a=0 a=1
State state Output State Output
→ q1 q1 0 q2 0
q2 q1 0 q3 1
q3 q1 0 q3 1

Now, Find identical rows and remove one of them

Present a=0 a=1
State state Output State Output
→ q1 q1 0 q2 0
q2 q1 0 q2 1

Minimization of Finite Automata

▶ Equivalence: Two states q1 and q2 are equivalent(denoted by
q1 ≡ q2), if both δ(q1, x) and δ(q2, x) are final states or both
of them are non-final states for all x ∈ Σ∗.

▶ Precisely, Two states q1 and q2 are k-equivalent (k ≥ 0), if
both δ(q1, x) and δ(q2, x) are final states or both non-final
states for all string x of length k or less.

▶ If δ(q1,w) and δ(q2,w) are equivalent then
▶ for |w |= 0, the states are 0-equivalent.
▶ for |w |= 1, the states are 1-equivalent.
▶ for |w |= 2, the states are 2-equivalent.

.

..
▶ for |w |= n, the states are n-equivalent.

▶ Properties of Equivalence relations:
▶ If a relation is equivalence or k-equivalence, then they are

reflexive, symmetric and transitive.
▶ If q1 and q2 are k-equivalent for all k ≥ 0, then they are

equivalent.
▶ If q1 and q2 are (k+1)-equivalent, then they are k-equivalent.
▶ πn=πn+1 for some n

Minimization of Finite Automata

▶ Construct a minimum state automaton equivalent to the given
finite automaton

Solution:

1. Draw transition table
State \Σ 0 1
→ q0 q1 q5
q1 q6 q2
q2O q0 q2
q3 q2 q6
q4 q7 q5
q5 q2 q6
q6 q6 q4
q7 q6 q2

Minimization of Finite Automata

2. Find 0-equivalent set
π0=[q0, q1, q3, q4, q5, q6, q7][q2]

3. Find 1-equivalent set
π1=[q0, q6, q4][q1, q7][q5, q3][q2]

4. find 2-equivalent set
π2=[q0, q4][q6][q2][q1, q7][q3, q5]

5. find 3-equivalent set
π3=[q0, q4][q6][q2][q1, q7][q3, q5]

Therefore, M’=(Q’,{ 0,1 } ,δ,q′0,F’)
where Q’={[q2],[q0, q4],[q6],[q1, q7],[q3, q5]}
q′0=[q0, q4], F’=[q2]

State \Σ 0 1
[q0, q4] [q1, q7] [q3, q5]
[q1, q7] [q6] [q2]
[q2] [q0, q4] [q2]

[q3, q5] [q2] [q6]
[q6] [q6] [q0, q4]

Minimization of Finite Automata

▶ Construct a minimum state automaton equivalent to the given
finite automaton

▶ Solution:
State \Σ a b
→ q0 q1 q0
q1 q0 q2
q2 q3 q1
q3O q3 q0
q4 q3 q5
q5 q6 q4
q6 q5 q6
q7 q6 q3

Minimization of Finite Automata

▶ π0={{q3}{q0, q1, q2, q4, q5, q6, q7}}
▶ π1={{q3}{q0, q1, q5, q6}{q2, q4},{q7}}
▶ π2={{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}
▶ π3={{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}

∴ Q’= {{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}
q′0={q0, q6}
F’={q3}
Now, make δ′ and transition diagram.

Minimization of Finite Automata

▶ Construct minimum state automaton equivalent to given
automata M:

State \Σ a b

→ q0 q0 q3
q1 q2 q5
q2 q3 q4
q3 q0 q5
q4 q0 q6
q5 q1 q4
q6O q1 q3

Language: Introduction

▶ Language
▶ Formal (Syntactic Languages)
▶ Informal (Semantic Languages)

▶ Alphabet
▶ String A concatenation of finite symbols from the alphabet is

called a string.
Example: If Σ={a,b} then a, abab, aaabb,
abababababaaaaaaabaab, etc.

▶ Empty String or Null String ∧ or Λ or ϕ
=⇒ A string with no symbols

▶ Words =⇒ strings belonging to some language
Example: If Σ={x} then a language L can be defined as
L={xn:n=1,2,3,....} or
L={x,xx,xxx,....}
Here, x, xx, xxx ,.... are the words of L.

▶ All words are strings but not all strings are words.

Language: Introduction

▶ Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

▶ Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.
Example:
▶ If s=abc over Σ={a,b,c}

Then, Rev(s) or s r=cba
▶ Σ={B,aB,bab,d}

s=BaBbabBd
s r=dBbabaBB

Language: Definition

▶ Descriptive Definition

▶ Recursive Definition

▶ Using Regular Expression

▶ Using Finite Automata, etc.

Descriptive definition of Language
The language is defined describing the conditions imposed on its words.
Example:

1. The language L of strings of odd length, defined over Σ={a}
=⇒ L={a, aaa,aaaaa,}

2. The language L of strings that doesnot start with ’a’ defined over Σ={a,b,c}
=⇒ L={b,c,ba, bb,bc,ca,cb,cc}

3. The language L of strings of length 2 over Σ={0,1,2}
=⇒ L={00,01,02,10,22,12,...}

4. The language L of strings ending in 0 over Σ={0,1}
L={0,00,10,000,010,100,...}

5. The language L of Strings with number of ”a”(s) equal to number of ”b”(s)
over Σ={a,b}
L={∧, ab,aabb,abab,baba,abba,....}

6. Language Even-Even of string with even number of a(s) and even number of
b(s) over Σ={a,b}
L={∧, aa,bb,aaaa,aabb,abab,...}

7. Language Integer of strings over Σ=-,0,1,2,3,4,5,6,7,8,9
L={......, -2,-1,0,1,2,....}

8. Language {anbn} over Σ={a,b} or {anbn:n=1,2,3,....}
L={ab,aabb,aaabbb,}

9. Palindrome over Σ={a,b}
L={∧, a,b, aa,bb, aaa,aba,bab,bbb,....}

GRAMMAR

▶ A grammar is (VN ,Σ, P,S)
where VN is a non-empty set whose elements are called
variables.
Σ finite non-empty set whose elements are called terminals.
S is aspecial symbol called Start Symbol.
P are set of Production rules.

▶ VN ∩ Σ = ϕ

Example
G={VN ,Σ,P, S} is a Grammar, where
VN={<sentence>,<noun>,<verb>,<adverb>}, Σ={Ram,Sam,ran,sang,fast},
S=<sentence>
P consists of following productions:
<sentence>→<noun><verb>
<sentence>→<noun><verb><adverb>
<noun>→ Ram
<noun>→ Sam
<verb>→ ran
<verb>→ sang
<adverb>→ fast

Grammar

▶ If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}

▶ If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

▶ Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Grammar

Exercise
Construct a grammar G so that L(G) = {anbam |n, m ≥ 1}
▶ If G is S → aS |bS |a |b, Find L(G).

Solution: L(G)={a, b}+

Exercise 1
If G is S → aS |a, then show that L(G)={a}+

▶ Let L be the set of all palindromes over {a,b}. Construct a
grammar G generating L.
Solution: ∧, a, b, or axa and bxb are palindromes.
∴ P consists of
S → ∧
S → a, S → b
S → aSa, S → bSb
Thus, G=({S},{a,b},P,S)

Grammar

▶ Construct a Grammar generating L={wcwT |w ∈ {a, b}∗}
Solution: Let G=({S},{a,b,c},P,S)
where P is defined as
S → aSa |bSb |c

▶ Find a grammar generating L={anbnc i |n ≥ 1, i ≥ 0}
Solution: L=L1 ∪ L2, L1={anbn |n ≥ 1}
L2={anbnc i |n ≥ 1, i ≥ 1}
Let ”P” be as follows:
S → A
A → ab |aAb
S → Sc
Let G=({S,A}, {a,b,c}, P,S) for n ≥ 1, i ≥ 0

S
∗−→ Sc i → Ac i → an−1Abn−1c i → an−1abbn−1c i = anbnc i

L(G)={anbnc i |n ≥ 1, i ≥ 0}

Grammar

▶ Find a grammar generating
{ajbncn |n ≥ 1, j ≥ 0 }
Solution: Let G=({S,A},{a,b,c},P,S)
where ”P” consists of:
S → aS |A
A → bAc |bc

▶ Let G =({S,A},{0,1,2},P,S) where P consists of
S → 0SA2 |S → 012
2A → A2
1A → 11. Show that L(G)={0n1n2n |n ≥ 1}
Solution: S

∗−→ 0n−1S(A2)n−1 by applying S → 0SA2 (n-1)
times
→ 0n12(A2)n−1 by applying S → 012
∗−→ 0n1An−12n by applying 2A → A2 several times
∗−→ 0n1n2n by applying 1A → 11 (n-1 times)
∴ 0n1n2n ∈ L(G) for all n ≥ 1

Grammar

▶ Construct grammar G generating {anbncn |n ≥ 1}
Solution: G=({S,B,C},{a,b,c},P,S)
where P consists of: S → aSBC |aBC, CB → BC, aB → ab,
bB → bb, bC → bc, cC → cc
S =⇒ aBC =⇒ abC =⇒ abc

▶ Construct a grammar G generating {xx |x ∈ {a, b}∗}
Solution: Let G is as follows: G=({S,D,E,F,A,B},{a,b},P,S)
where P consists of :
S → DEF
DE → aDA, DE → bDB
AF → EaF, BF → EbF
Aa → aA, Ab → bA, Ba → aB, Bb→bB
aE → Ea, bE→ Eb
DE → ∧, F → ∧

Grammar

▶ Let G=({S,A,B},{a,b},P,S) where P consists of
S → aABa, A → baABb, B → Aab, aA → baa, bBb → abab.
Test whether w = baabbabaaabbaba is in L(G).
Solution: S→ aABa

=⇒ baaBa
=⇒ baaAaba
=⇒ baabaABbaba
=⇒ baabbaaBbaba
=⇒ baabbaaAabbaba
=⇒ baabbabaaabbaba=w

∴ w ∈ L(G)
▶ If the grammar G is given by the productions S → aSa |bSb

|aa |bb |∧, show that:
▶ L(G) has no strings of odd length
▶ Any string in L(G) is of length 2n, n ≥ 0
▶ The number of strings of length 2n is 2n

Chomsky Classification of Languages

▶ Chomsky classified grammar into 4 types i.e. (type 0-3)

▶ A type 0 grammar is any phrase structure grammar without
any restrictions
=⇒ All grammar we have considered till now are type 0
grammar

▶ In a production of form ϕAψ → ϕαψ
Example:
▶ abAbcd → abABbcd

ϕ =⇒ ab
α =⇒ AB
ψ =⇒ bcd

▶ AC → A
ϕ =⇒ A
α =⇒ ∧
ψ =⇒ ∧

Chomsky Classification of Languages

▶ C → ∧
ϕ =⇒ ∧
α =⇒ ∧
ψ =⇒ ∧

Chomsky Classification of Languages

▶ A production of the form ϕA ψ → ϕαψ is called Type-1
production or Context-sensitive Language, if α ̸= ∧
=⇒ In type-1 production erasing ’A’ is not allowed
Example:
▶ aAbCD → abcDbcD is a type 1 production.

A is replaced by bcD ̸= ∧
▶ AB → AbBc is a type 1 production.
▶ A → abA is a type 1 production.

▶ A grammar is called type 1 or Context sensitive or
Context-dependent if all its productions are type 1
productions.

▶ The production S → ∧ is also allowed in type 1 grammar, but
in this case S does not appear on the right-hand side of any
production.

▶ The language generated by a type-1 grammar is called a
type-1 or context-sensitive language

Chomsky Classification of Languages

▶ A grammar G= (VN , Σ,P,S) is monotonic (or
length-increasing) if every production in P is of the form
α→ β with |α |≤ |β |or S → ∧. In second case, S does not
appear on right-hand side of any production in P.

▶ Type-2: Context free Grammar generates context free
language

▶ A Type-2 production is a production of the form A → α
where A ∈ VN and α ∈ (VN ∨ Σ)∗

▶ In other words, in Type-2 =⇒
▶ It should be in Type-1
▶ L.H.S. production should have only 1 variable i.e. |A |= 1 and

there is no restriction on α
Example: S → Aa, A →a, B → abc, A → ∧ are type-2
productions.

Chomsky Classification of Languages

▶ A production of the form A → a or A → aB, where A,B ∈ VN

and a∈ Σ is called a type-3 production.

▶ A grammar is called a type-3 or Regular Grammar if all its
productions are type-3 productions.

▶ A production S → ∧ is allowed in type-3 grammar, but in this
case S does not appear on the right-hand side of any
production

Chomsky Classification of Languages

1. Find the highest type number which can be applied to the
following productions:
▶ S → Aa, A → c |Ba, B → abc
▶ S → ASB |d, A → aA
▶ S → aS |ab

2. Differentiate between Recursive Set and Recursively
Enumerable Set

3. Prove that Context-sensitive language is recursive.

4. Prove that there exists a recursive set which is not a
contxt-sensitive language over {0,1}.

5. Let G=({A,B,S},{0,1},P.S) where P consists of S → 0AB, A0
→ S0B, A1 →SB1, B →SA, B →01. Show that L(G)= ϕ.

6. Find the language generated by grammar S → AB, A →A1 |0,
B → 2B |3. Can the above language be generated by a
grammar of higher type?

Chomsky Classification of Languages

7. Construct a grammar which generates all even integer upto
998.

8. Construct CFG to generate the following:
▶ {0m1n |m ̸=n, m,n ≥1}
▶ {albmcn|one of l,m,n equals 1 and remaining tqo are equal}
▶ {albmcn |l+m=n}
▶ The set of all strings over {0,1} containing twice as many 0’s

and 1’s

9. Show that G1=({S},{a,b},P1,S) where P1={S → aSb |ab} is
equivalent to G2=({S,A,B,C},{a,b},P2,S), where P2 consists
of S →AC, C→SB, S →AB, A→a,B →b

10. What are the applications of different grammar types?

Regular Expression

▶ A language is regular if there exists a finite acceptor for it
∴ Every regular language can be described as DFA or NDFA

▶ Regular Expression: Algebraic description of languages
▶ Let Σ be a given alphabet, then:

1. ϕ,∧ and a ∈ Σ are all regular expressions, called Primitive
regular expressions.

2. If R1 and R2 are regular expressions, so are R1 + R2,R1.R2,R1
∗

and (R1)
3. A string is a regular expression if and only if it can be derived

from primitive regular expressions by a finite number of
applications of the rules in (2)

▶ Example: For Σ={a,b,c}, the string (a+ b.c)∗.(c + ϕ) is a
regular expression
while (a+ b+) is not a regular expression.

Language Associated with Regular Expression

The language L(R) denoted by any regular expression ’R’ is defined
by following rules

1. ϕ is a R.E. denoting empty set

2. ∧ is a R.E. denoting {∧}
3. For every a ∈ Σ, a is a R.E. denoting {a}

If R1 and R2 are R.E. , then

4. L(R1+R2)=L(R1)∨L(R2)

5. L(R1.R2)=L(R1)L(R2)

6. L((R1))=L(R1)

7. L(R∗
1)=(L(R1))

∗

Example: For Σ={a,b}, the expression
R=(a+ b)∗(a+bb) is regular
=⇒ L(R)={a,bb,aa,abb,ba,bbb,....}
=⇒ L(R) is the set of all strings on {a,b}, terminated by either
’a’ or ’bb’.

Language Associated with Regular Expression

▶ R=(aa)∗(bb)∗b
denotes the set of all strings with even number of a’s followed
by an odd number of b’s
L(R)={a2nb2m+1 |n≥0, m≥0}

▶ For Σ ={0,1}. Give a regular expression ’R’ such that
L(R)={w∈ Σ∗|w has atleast one pair of consecutive zeroes}
Solution: R=(0 + 1)∗00(0 + 1)∗

▶ Find R.E. for language
L={w ∈ {0, 1}∗ |w has no pair of consecutive zeroes}
Solution: R=(1 + 01)∗(0 + ∧)
R=(1∗011∗)∗(0 + ∧) + 1∗(0 + ∧)

▶ Find all strings in L((a+ b)∗b(a+ ab)∗) of length less than 4

▶ Find R.E. for set {anbm:(n+m) is even}

Identities for Regular Expression

1. ϕ + R = R

2. ϕR = R ϕ = ϕ

3. ΛR = RΛ =R

4. Λ∗ = Λ and ϕ∗ = Λ

5. R + R = R

6. R∗R∗ = R∗

7. RR∗ = R∗R

8. (R∗)∗ = R∗

9. Λ + RR∗ = R∗ = Λ + R∗R

10. (PQ)∗P = P(QP)∗

11. (P + Q)∗ = (P∗Q∗)∗ =(P∗ + Q∗)∗

12. (P + Q)R = PR + QR and R(P + Q) = RP + RQ

ϵ-NFA

=⇒ Moving without reading a symbol from Input Tape.

State/Input 0 1 ϵ
A B,C A B
B - B C
C C C -

Epsilon Closure
ϵ-closure for a given state X is a set of States which can be
reached from states X with only (null) or ϵ moves including the
state X itself.
Example: ϵ closure (A)={A,B,C}
ϵ closure (B)={B,C}
ϵ closure (C)={C}

Automata and Regular Expression

▶ Automaton for L(R1 + R2)

Automata and Regular Expression

▶ Automaton for L(R1.R2)

Automata and Regular Expression

▶ Automaton for L(R1
∗)

Automata and Regular Expression

▶ Generalized Transition Graph: A transition graph whose edges
are labelled as R.E.

▶ Example: L(R)=(a∗ + a∗(a+ b)c∗)
▶ Equivalence of Generalized Transition Graph:

Let R be a regular expression. Then, there exists some NFA
that accepts L(R). Consequently, L(R) is a regular language.

▶ Find NDFA which accepts L(R) where R=(a+ bb)∗(ba∗ + Λ)

Automata and Regular Expression

▶ The Strings denoted by such regular expressions are a subset
of the language accepted by GTG, with full language being
the union of all such generated subsets

▶ Example: The language accepted by the following GTG is

L(a∗ + a∗(a+ b)c∗)
▶ State Elimination method

▶ Arden’s Theorem

Automata and Regular Expression

State Elimination method

1. Initial State should not have any incoming edge

2. Final State should not have any outgoing edge

3. Only 1 final state

4. Eliminate each non-initial/final vertex one by one

State Elimination Method

1. Find R.E. for given DFA

State Elimination Method

2. Find R.E. for given DFA

State Elimination Method

3. Find R.E. for given DFA

State Elimination Method

1. Find R.E. for the given DFA

2. Find R.E. for the given DFA

Elimination of ϵ/∧ moves

Suppose we want to replace a ∧-move from vertex v1 to vertex v2
Then proceed as follows:

1. Find all the edges starting from v2

2. Duplicate all these edges starting from v1, without changing
the edge labels.

3. If v1 is an initial state, make v2 also as initial state

4. If v2 is a final state. make v1 also as the final state

Elimination of ϵ/∧ moves

Example:

Elimination of ϵ/∧ moves

Elimination of ϵ/∧ moves

Elimination of ϵ/∧ moves

Elimination of ϵ/∧ moves

Example:

Conversion of ϵ-NFA to DFA

Steps:

1. Take ϵ closure of initial state as beginning state

2. Find states that can be traversed from present state for each
input symbol

3. If any new state is found, repeat step 2 till we get no new
state in the transition table.

4. Mark states containing final states as new final state.

State/Input 0 1
{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C} {C} {C}

Now, create transition diagram

Arden’s Theorem

Let P and Q be two regular expressions over Σ. If P does not
contain Λ, then the following equation in R i.e. R=Q+RP has a
unique solution R=QP∗

Proof:

R = Q + RP (1)

putting ”R=Q+RP” in equation 1
R=Q+QP+RPP
putting R recursively again and again
we get:
R=Q+QP+QP2+QP3+ . . .
R= Q (Λ + P + P2 + P3 + . . .)
R=QP∗

Arden’s Theorem

Assumptions:

▶ The transition diagram must not have null transitions.

▶ It must only 1 initial state, let v1
▶ Its vertices are v1, . . . , vn.

▶ Vi , the R.E. represents the set of strings accepted by the
system even though vi , is a final state.

▶ αij denotes the R.E. representing the set of labels of edges
from vi to vj . When there is no such edge, αij = ϕ.
Consequently, we can get the following set of equations in
V1, . . . ,Vn:
V1 = V1α11 + V2α21 + · · ·+ Vnαn1 + ∧
V2 = V1α12 + V2α22 + · · ·+ Vnαn2
...
Vn = V1α1n + V2α2n + · · ·+ Vnαnn

Arden’s Theorem

▶ By repeatedly applying substitutions and Arden’s theorem, we
can express Vi in terms of αij .

▶ For getting the set of strings recognized by the transition
system, we have to take the ”union” of all Vi corresponding
to final states

Arden’s Theorem

1. Find R.E. for the following DFA

q1 = q10 + q30 + ∧ (2)

q2 = q11 + q21 + q31 (3)

q3 = q20 (4)

putting equation 4 in equation 3

q2 = q11 + q21 + q31

= q11 + q21 + (q20)1

= q11 + q2(1 + 01)

Arden’s Theorem

Applying Arden’s Theorem

q2 = q11(1 + 01)∗ (5)

putting 5 in equation 2

q1 = q10 + q30 + ∧
= q10 + q200 + ∧

= q10 + (q11(1 + 01)∗00) + ∧
q1(0 + 1(1 + 01)∗00) + ∧

using arden’s theorem again

q1 = ∧(0 + 1(1 + 01)∗00)
∗

(0 + 1(1 + 01)∗00)
∗

As q1 is the final state. ∴ r= (0 + 1(1 + 01)∗00)
∗

Arden’s Theorem

▶ Consider the transition system below. Prove that the strings
recognized are (a+ a(b + aa)∗b)

∗
a(b + aa)∗a

Arden’s Theorem

▶ Consider the transition system below. Prove that the strings
recognized are (a+ a(b + aa)∗b)

∗
a(b + aa)∗a

Solution:

q1 = q1a+ q2b + ∧ (6)

q2 = q1a+ q2b + q3a (7)

q3 = q2a (8)

Putting equation 8 in equation 7

q2 = q1a+ q2b + q2aa

q2 = q1a+ q2(b + aa)

q2 = q1a(b + aa)∗

Arden’s Theorem

Now putting q2 in equation 6

q1 = q1a+ q2b + ∧
= q1a+ q1a(b + aa)∗b + ∧
= q1(a+ a(b + aa)∗b) + ∧

= ∧(a+ a(b + aa)∗b)
∗

= (a+ a(b + aa)∗b)
∗

putting this in q2

q2 = (a+ a(b + aa)∗b)
∗
a+ q2b + q2aa

= (a+ a(b + aa)∗b)
∗
a+ q2(b + aa)

= (a+ a(b + aa)∗b)
∗
a(b + aa)∗

putting q2 in q3

q3 = (a+ a(b + aa)∗b)
∗
a(b + aa)∗a (9)

Arden’s Theorem

▶ Since q3 is the final state.
∴ r= (a+ a(b + aa)∗b)

∗
a(b + aa)∗a

Arden’s Theorem

▶ Prove that the finite automaton whose transition diagram
below accepts the set of all strings over alphabet {a,b} with
an equal number of a’s and b’s, such that each prefix has
atmost has atmost one more a than the b’s and atmost one
more b than the a’s

Arden’s Theorem

Solution:

q1 = q2b + q3a+ ∧ (10)

q2 = q1a (11)

q3 = q1b (12)

q4 = q2a+ q3b + q4a+ q4b (13)

putting q2 and q3 in q1

q1 = q1ab + q1ba+ ∧
q1 = q1(ab + ba) + ∧

applying Arden’s theorem

q1 = ∧(ab + ba)∗

q1 = (ab + ba)∗

Arden’s Theorem

▶ Now, the prefix can be even or odd in length. For Prefix x of
even length, the number of a’s and b’s shall be equal as x is a
substring formed by ab’s and ba’s. For prefix x of odd length,
then we can write ’x’ as ya or yb. As y has even number of
symbols, which implies x has one more a than b or vice-versa

Arden’s Theorem

▶ Describe in English the set accepted by finite automaton
whose transition diagram is as under:

Arden’s Theorem

▶ Construct a regular expression corresponding to the state
diagram described as under:

▶ Give R.E. for representing the set L of strings in which every 0
is immediately followed by atleast two 1’s. Prove that R.E. r=
∧+1∗(011)∗(1∗(011)∗)

∗
also describes the same set of strings.

▶ Prove
(1+00∗1)+(1+00∗1)(0 + 10∗1)∗(0+10∗1) = 0∗1(0 + 10∗1)∗

Construction of FA equivalent to given RE

The method for constructing a finite automaton equivalent to a
given regular expression is called the subset method which involves
four steps.

1. Construct a transition system equivalent to the given regular
expression using ∧-moves.

2. Construct the transition table for the transition graph
obtained in step 1.

3. Construct the DFA equivalent to NDFA.

4. Reduce the number of states if possible.

▶ Construct FA equivalent to Regular Expression.
(0 + 1)∗(00 + 11)(0 + 1)∗

Solution:

Construction of FA equivalent to given RE

State/Σ 0 1
q0 q0, q3 q0, q4
q3 qf
q4 qf
qf qf qf

Construction of FA equivalent to given RE

converting to DFA
State/Σ 0 1
q0 q0, q3 q0, q4
q0, q3 q0, q3, qf q0, q4
q0, q4 q0, q3 q0, q4, qf
q0, q3, qf q0, q3, qf q0, q4, qf
q0, q4, qf q0, q3, qf q0, q4, qf

reducing
State/Σ 0 1
q0 q0, q3 q0, q4
q0, q3 q0, q3, qf q0, q4
q0, q4 q0, q3 q0, q3, qf
q0, q3, qf q0, q3, qf q0, q3, qf

Construction of FA equivalent to given RE

1. Construct DFA with reduced states equivalent to R.E.
(10+(0+11)0∗1).

2. Construct transition system equivalent to R.E.
▶ (ab + c∗)∗b
▶ a+ bb + bab∗a
▶ (a+ b)∗abb

3. Prove that
(a∗ab + ba)∗a∗ = (a+ ab + ba)∗

4. Construct a finite automata accepting all strings over {0,1}
ending in 010 or 0010.

5. Construct a regular grammar which can generate the set of all
strings starting with a letter (A to Z) followed by a string of
letters or digits (0 to 9).

2-way DFA

▶ 2-way DFA allows the read head to move left or right on the
input

▶ Two end-markers

▶ Needs only 1 accept or reject state.

▶ A tuple M = {Q, Σ, ⊢, ⊣, δ, s, t, r }
where Q is the set of states
Σ is the input alphabet set
⊢ is the left end marker
⊣ is the right end marker
δ is Q × (Σ ∪ {⊢,⊣}) → Q × {L,R}
s is start state
t is the accept state
r is reject state such that r ̸= t

2-Way DFA

▶ Determine the acceptability of 101001 for the following:

State/ Σ 0 1

→ q0 (q0,R) (q1, R)
q1 (q1,R) (q2, L)
q2 (q0,R) (q2, L)

where Q={q0, q1, q2}, s=q0, t=q1, r=q2

Pumping Lemma for Regular Sets

▶ Let M = (Q, Σ, δ, q0, F) be a finite automaton with ’n’
states. Let L be the regular sets accepted by M.

▶ Let w ∈ L and |w |≥ n, then ∃ x,y,z such that w=xyz, y ̸= ∧
and xy iz ∈ L for each i ≥ 0.

▶ Applications of Pumping Lemma: Used to prove that
certain set are not regular.

▶ Steps to prove that given set is not regular:
1. Assume L is regular. Let ’n’ be the number of states in

corresponding FA.
2. Choose a string ’w’ such that |w |≥ n. Use pumping lemma to

write w=xyz with |xy |≤ n and |y |> 0
3. Fing a suitable integer i such that xy iz ̸∈ L. This contradicts

our assumption. Hence, L is not regular.

Pumping Lemma for Regular Sets

Show that the set L ={ai 2 |i ≤ 1} is not regular
Solution:

▶ Let L is regular
Let ’n’ be number of states in FA accepting L.

▶ Let w=an2 =⇒ |w |= n2 > n
by pumping lemma, w=xyz with |xy |≤ n and |y |> 0

▶ Consider xy2z
|xy2z |= |x |+ 2 |y |+ |z |> |x |+ |y |+ |z |∵ |y |> 0
=⇒ n2 = |xyz |= |x |+ |y |+ |z |< |xy2z |
As |xy |≤ n, |y |≤ n

▶ ∴ |xy2z |= |x |+ 2 |y |+ |z |≤ n2 + n < n2 + n + n + 1.
Hence, |xy2z |lies between n2 and (n + 1)2 but not equal to
any one of them.
∴ |xy2z |is not a perfect square and so xy2z ̸∈ L.
∴ this is a contradiction. This implies not Regular

Pumping Lemma for Regular Sets

Show that L= {ap |p is a prime} is not regular.
Solution:

1. Let L is regular. Let ’n’ be number of states in finite
automata accepting L.

2. Let ’p’ be a prime number greater than ’n’.
Let w=ap

by pumping lemma, w=xyz with |xy |≤ n and |y |> 0
x, y, z are simply strings of a’s.
So, y= am for some m ≥ 1 (and ≤ n)

3. Let i= p+1, then
|xy iz |= |xyz |+ |y i−1 |=p+(i-1)m=p+pm=p(1+m) which is
not prime.
∴ xy iz ̸∈ L. =⇒ contradiction.
So, L is not regular.

Pumping Lemma for Regular Sets

1. Show that L={0i1i |i ≥ 1} is not regular.

2. Show that L= {ww |w ∈ {a, b}∗ } is not regular.

3. Is L = {a2n |n ≥ 1} regular ?

Regular Sets and Regular Grammar

We can construct a Regular Grammar from a Regular Sets and vice
versa.
Construction of a Regular Grammar from a Regular Sets

▶ We can show that L(G) = T (M) by using the construction of
P such that:
Ai → aAj iff δ(qi , a) = qj
Ai → a iff δ(qi , a) ∈ F

▶ Construct a regular grammar G generating the regular set
represented by
P= a∗b(a+ b)∗.

Regular Sets and Regular Grammar

Solution:

Let G=({q0, q1},{a,b},P,q0)
where P is given by:
q0 → aq0
q0 → bq1, q0 → b
q1 → aq1, q1 → bq1
q1 → a, q1 → b

Regular Sets and Regular Grammar

Construction of a Regular Set from a Regular Grammar

▶ We define M as:
1. Each production Ai → aAj induces a transition from qi to
qj with label a i.e δ(qi , a) = qj ,
2. Each production Ai → a induces a transition from qi to qf
with label a i.e δ(qi , a) = qf ∈ F
3. S → ∧, corresponding transition is from q0 to qf with a
label ∧ or q0 is also a final state.

▶ Let G=({A,B},{a,b},P,A) where P consists of
A → aB, B → bB
B → a, B → bA
Construct a transition system M accepting L(G).

Regular Sets and Regular Grammar

▶ If a regular grammar G is given by S → aS |a. Find M
accepting L(G).

▶ Construct a DFA equivalent to grammar
S → aS |bS |aA
A → bB
B → aC, C → ∧

Context Free Grammar

▶ Finite Automata accepts all regular languages.
▶ Simple languages such as

▶ anbn : n = 0, 1, 2,
▶ w : w is a Palindrome

are not regular and thus no finite automata accepts them.

▶ Context Free Languages are a larger class of languages that
encompasses all regular languages and many others including
above examples.

▶ Languages generated by context free grammar are called
Context free languages.

▶ Context free grammar are more expressive than finite
automata: If a language L is accepted by a finite automata,
then L can be generated by a context-free grammar, While
opposite is not true

Context-Free Grammars

▶ A Context-free grammar is a 4-tuple (Vn,Σ,P,S)

▶ Vn is set of Variables.

▶ Σ is set of terminals.

▶ P is set of Productions.

▶ S is the start symbol.

▶ A Grammar G is Context free, if every production is of the
form A → α, where A ∈ VN and α ∈ (VN ∪ Σ)∗

Example:CFG

▶ Contruct a CFG generating all integers (with sign).
Solution: Let G = (V ,Σ,P, S)
where V = {S , < sign >,< digit >,< integer >}

Σ = {0, 1, 2, 3,9,+,−}
P consists of:

S →< sign >< integer >
< sign >→ +|−
< integer >→< digit >< integer > | < digit >
< digit >→ 0|1|2| . . . |9

Derivation for -42
S→< sign >< integer >

=⇒ -< integer >
=⇒ -< digit >< integer >
=⇒ -4< digit >
=⇒ -42

Derivation Trees

▶ Trees are used for derivation of CFG.

▶ Definition: A derivation tree (or a parse tree) for a CFG
G = (V ,Σ,P,S) is a tree satisfying:
▶ Every vertex has a label which is variable/terminal/∧.
▶ The root has label S .
▶ The label of the internal vertex is a variable.
▶ If vertices n1, n2,nk written with labels X1,X2,Xk are

sons of vertex ’n’ with label A, then A → X1X2...Xk is a
production in P.

▶ A vertex ’n’ is a leaf if its label is a ∈ Σ or ∧; ’n’ is the only
son of its father if its label is ∧

▶ Let G = ({S,A},{a,b},P,S) where P consists of
S → aAS |a|SS ,A → SbA|ba

Derivation Trees

▶ Yield of Derivation Tree:is a
concatenation of labels of
the leaves without repetition
in the left to right ordering.
Example: aabaa

▶ Subtree of a Derivation Tree
T is a tree:
▶ whose root is some vertex

’v ’ of T ,
▶ whose vertices are

descendants of ’v ’
together with their labels.

▶ whose edges are those
connecting the
descendants of v .

Figure: Derivation Tree T

Figure: Sub tree of Tree T

Figure: Sub tree of Tree T

Derivation Trees

Theorem 1:
Let G=(V,Σ, P, S) be a CFG. Then, S

∗
=⇒ α if and only if there

is a derivation tree for G with yield α.

▶ Example: Consider G whose productions are

S → aAS |a,A → SbA|SS|ba. Show that S
∗

=⇒ aabbaa and Construct a
derivation tree whose yield is aabbaa.

▶ Case 1:
S =⇒ aAS =⇒ aSbAS =⇒ aabAS =⇒ a2bbaS =⇒ aabbaa

▶ Case 2:
S =⇒ aAS =⇒ aAa =⇒ aSbAa =⇒ aSbbaa =⇒ aabbaa

▶ Case 3:
S =⇒ aAS =⇒ aSbAS =⇒ aSbAa =⇒ aabAa =⇒ aabbaa

Derivation Trees

▶ Left most derivation: A derivation A
∗

=⇒ w is called
left-most derivation, if we apply production only to the left
most variable at every step.

▶ Right most derivation: A derivation A
∗

=⇒ w is a right most
derivation, if we apply production to right most variable at
each step.

Theorem
If A

∗
=⇒ w in G , then there is a left most derivation of w .

Derivation Trees

▶ Example: Let G be the grammar S → 0B|1A, A → 0|0S|1AA, B → 1|1S |0BB.

For the string 00110101, find:

▶ the leftmost derivation
▶ the rightmost derivation
▶ The derivation tree

▶ Leftmost derivation:

S =⇒ 0B =⇒ 00BB =⇒ 001B =⇒ 0011S =⇒ 02120B =⇒
021201S =⇒ 0212010B =⇒ 02120101

▶ Rightmost derivation:

S =⇒ 0B =⇒ 00BB =⇒ 00B1S =⇒ 00B10B =⇒ 02B101S =⇒
02B1010B =⇒ 02B10101 =⇒ 02110101

▶ Derivation tree:

Ambiguity in CFG

In books selected information is given.

▶ A terminal string w ∈ L(G) is ambiguous if there exist two or
more derivation trees for ’w ’ (or there exist two or more left
most derivation of w).

▶ Example: G = ({S}, {a, b,+, ∗},P, S), where P consists of
S → S +S |S ∗S |a|b. We have two derivation trees for a+a*b:

▶ S =⇒ S + S =⇒ a+ S =⇒ a+ S ∗ S =⇒ a+ a ∗ S =⇒ a+ a ∗ b

▶ S =⇒ S ∗ S =⇒ S + S ∗ S =⇒ a+ S ∗ S =⇒ a+ a ∗ S =⇒ a+ a ∗ b

Ambiguity in CFG

Example:

▶ If G is grammar S → SbS |a. Show that the given grammar is
ambigious.

▶ For w = abababa

▶ Thus, G is ambiguous.

Simplification of CFG

▶ We eliminate following in order to simplify a grammar:

▶ Useless variables

▶ Unit productions

▶ Null Productions

Eliminating Useless Variables

▶ Those variables which are not deriving any terminal string and
which are not reachable are known as Useless Variables.

▶ Example: S → AB
A → a|B
B → b|C
C → aC
D → b

▶ C is not deriving any terminal, C is not deriving any terminal
=⇒ useless variable, ∴ remove C
S → AB, A → a|B, B → b, D → b
D is not included in S =⇒ remove D
∴ S → AB, A → a|B, B → b

Eliminating Unit Productions

▶ Production of the form A → B is known as Unit Production

▶ Example: S → A, A → B, B → C , C → D, D → a
appears as chainlike process
Instead S → a will serve the purpose
∴ required grammar is S → a

Eliminating Unit Productions

▶ Example:S → Aa|B, B → A|bb, A → a|bc|B
Starting from last to first
A → B is a unit production, replace B by its R.H.S.
A → a|bc|A|bb
B → a|bc|A|bb
S → Aa|a|bc|A|bb
Now, remove unit productions
A → a|bc|bb
B → a|bc|bb
S → Aa|bc|a|bb
Now, S does not has B, =⇒ remove B
S → Aa|bc|a|bb
A → a|bc|bb

Eliminating Null Productions

▶ Any production of the form A → ϵ is called Null Production.

▶ Example: S → aAb, A → aAb|ϵ
Replace A with ϵ in each production containing A and add it
to grammar without ϵ
S → aAb|ab
A → aAb|ab

Simplifying CFG

▶ Example: Construct reduced grammar equivalent to grammar
G whose productions are:
S → AB|CA, B → BC |AB, A → a, C → aB|b
Here, B is not deriving any terminals ∴ remove B
S → CA, A → a, C → b
∴ New Grammar G ′ = ({S ,A,C}, {a, b},P,S)

▶ Question: Find the reduced grammar equivalent to G .
S → aAa, A → bBB, B → ab, C → aB

Normal forms of CFG

▶ Chomsky Normal Form

▶ Greibach Normal Form

Chomsky Normal Form

A CFG is in Chomsky normal form if all productions are of the
form:
A → BC or A → a and S → ∧ if ∧ ∈ L(G)
where A,B,C are variables and a is a terminal. When ∧ is in L(G),
we assume that S does not appear on the R.H.S. of any production.

▶ Example: The Grammar in the form:
S → AS |a, A → SA|b

▶ Reduction to Chomsky normal form

1. Elimination of null productions and unit productions
2. Elimination of terminals on R.H.S.
3. Restricting the number of variables on R.H.S.

Chomsky Normal Form

▶ Example: Convert the grammar G with Productions as:
S → ABa, A → aab, B → Ac to chomsky normal form
Let us assume few new variables:
X → a, Y → b, Z → c
gives S → ABX , A → XXY , B → AZ
Now, Assuming Q → XX , P → AB
gives, S → PX , A → QY , B → AZ , X → a, Y → b, Z → c ,
Q → XX , P → AB

▶ Convert the given grammar to CNF
▶ S → aSb |ab
▶ S → aAB |Bb

A → a , B → b
▶ S → bA |aB

A → bAA |aS |a
B → aBB |bS |b

Greibach Normal Form

▶ A CFG is said to be in Greibach Normal form, if all the
productions have the form A → aX (or A → a when X is ∧),
where a ∈ Σ and X ∈ V ∗ (X may be ∧) and S → ∧ if
∧ ∈ L(G) and S does not appear on the R.H.S. of any
production

▶ Example: S → aAB|bBB|bB|a
A → aA|bB|b, B → b

Lemma 1:
Let G = (V ,Σ,P, S) be a CFG. Let A → Bγ be an A-production
in P. Let the B-productions be B → β1|β2| . . . |βk . Define
P1 = (P − {A → Bγ}) ∪ {A → βiγ|1 ≤ i ≤ k}. Then
G1 = (V ,Σ,P1,S) is a context-free grammar equivalent to G.

Lemma 2:

Greibach Normal Form

Let G = (V ,Σ,P, S) be a CFG. Let the set of A-productions be
A → Aα1|Aα2| . . . |Aαr |β1|β2| . . . |βs | (βi ’s do not start with A).
Let Z be a new variable. Let G1 = (V ∪ {Z},Σ,P1,S), where P1

is defined as follows:

1. The set of A-productions in P1 are
A → β1|β2| . . . |βs
A → β1Z |β2Z | . . . |βsZ

2. The set of Z -productions in P1 are
Z → α1|α2| . . . |αr

Z → α1Z |α2Z | . . . |αrZ
3. The productions for the other variables are as in P.

Then G1 is a CFG and equivalent to G .

Greibach Normal Form

▶ Reduction to Greibach normal form

1. Elimination of null productions and unit productions
2. Elimination of terminals on R.H.S. except the first leftmost

terminal.
3. Make all production starting with a terminal if not.

▶ Example: Convert the grammar G into equivalent GNF:
S → abSb|aa
Solution: Let A → a, B → b
∴ S → aBSB|aA, A → a, B → b

▶ Convert the grammar S → ab |aS |aaS into GNF
Solution: Let B → b, A → a, S → aB |aS |aAS

▶ Exercise:

1. Convert the grammar S → AA|a,A → SS |b into GNF.
2. Convert the grammar S → AB,A → BS |b,B → SA|a into

GNF.
3. Convert the grammar

E → E + T |T ,T → T ∗ F |F ,F → (E)|a into GNF.

Pumping Lemma for Context Free Language

Let L be an infinite context free language. Then, there exists some
positive integer n such that:

1. Every z ∈ L with |z | ≥ n can be written as uvwxy for some
strings u, v ,w , x , y .

2. |vx | ≥ 1

3. |vwx ≤ n

4. uvkwxky ∈ L for all k ≥ 0

Application: We use the pumping lemma to show that a language
L is not a context free language.
Procedure: We assume that L is context-free. By applying the
pumping lemma we get a contradiction. The procedure can be
carried out by using the following steps:

Step 1 Assume L is context-free. Let n be the natural number
obtained by using the pumping lemma.

Pumping Lemma for Context Free Language

Step 2 Choose z ∈ L so that |z | ≥ n. Write z = uvwxy using the
pumping lemma.

Step 3 Find a suitable k so that uvkwxky /∈ L. This is a
contradiction, and so L is not context-free.

Pumping Lemma for Context Free Language

Ques: Show that the language
L={anbncn: n ≥ 0} is not context free.
Solution: Let L be Context free
Let w be a string in L
For n=4, string becomes aaaabbbbcccc
By Pumping Lemma, w=uvxyz
w=aaaabbbbcccc
Case 1: If vxy contain only a, b or c , then on pumping. It won’t be
in L
Case 2: If string contains any two either ab or bc, then pumped
string will contain akblcm with k ̸= l ̸= m or it will not be in the
order, so does not belong to L
∴ L is not context free.
▶ Show that following L are not Context free

1. L={ww : w ∈ {a, b}∗}
2. L={anbj : n = j2}
3. L= {an! : n ≥ 0}

Pumping Lemma for Context Free Language

Ques: Show that L = {ap|p is a prime } is not a context-free
language
Solution:

1. Let L be Context free, Let w be a string in L

2. Let n be the natural number obtained by using the pumping
lemma.

3. Let p be a prime number greater than n, Then z = ap ∈ L.
We can write z = uvwxy .

4. Prove for some k that uvkwxky /∈ L means |uvkwxky | is not
prime.

5. By pumping lemma, uv0wx0y = uwy ∈ L. So uxy | is a prime
number, say q.

6. Let |vx | = r . Then, |uvqwxqy | = q + qr .

7. As q(1 + r) is not a prime, means uvqwxqy /∈ L.

8. This is a contradiction. Therefore, L is not context-free.

Pumping Lemma for Context Free Language

▶ Show that following L are not Context free

1. L={ww : w ∈ {a, b}∗}
2. L={anbj : n = j2}
3. L= {an! : n ≥ 0}

Decision Algorithms

Some decision algorithms for context-free languages and regular
sets.

1. Algorithm for deciding whether a context free language L is
empty.

2. Algorithm for deciding whether a context-free language L is
finite.

3. Algorithm for deciding whether a regular language L is empty.

4. Algorithm for deciding whether a regular language L is infinite.

Linear Grammar

▶ A grammar in which atmost one variable can occur on right
side of any production without restriction on the size of this
grammar, is known as Linear Grammar.

▶ Right Linear Grammar- A grammar G = (V .T ,P, S) is said
to be right linear, if all the productions are of the form:
A → xB, A → x
where A,B ∈ V , x ∈ T ∗

▶ Left Linear Grammar- A grammar is said to be left linear if all
the productions are of the form:
A → Bx , A → x
where A,B ∈ V , x ∈ T ∗

▶ Linear Grammar- A grammar is said to be linear grammar if
all the productions are of the form:
A → vBw , A → w
where A,B ∈ V ; v ,w ∈ T ∗

Linear Grammar

▶ A regular grammar is always linear but not all linear grammars
are regular.

▶ A regular grammar is one that is either right linear or left
linear

▶ In a regular grammar, atmost one variable appears on right
side of any production. Further, that variable must
consistently be either on rightmost or leftmost symbol of right
side of any production.

▶ Example: G1 = ({S}, {a, b},P1,S) where P1 given as
S → abS |a is right linear.

▶ Example: G2 = ({S , S1,S2}, {a, b},P2, S) with productions
S → S1ab, S1 → S1ab,S1 → S2,S2 → a is left linear

Linear Grammar

▶ G = ({S ,A,B}, {a, b},P, S) with productions
S → A, A → aB|∧, B → Ab is not regular
∵ even if each production is right linear or left linear, but
grammar itself is neither right linear nor left linear ∴ not
regular

Linear Grammar

1. Construct a finite automata that accepts the language
generated by grammar
V0 → aV1, V1 → abV0 |b

2. Construct a right linear grammar for L(aab∗a)

3. Convert the following regular expression into equivalent
regular grammar
▶ (a+ b)∗a
▶ a∗+b+b∗

Pushdown Automata

Figure: Model of Pushdown Automata

▶ A Non-deterministic Pushdown Automata is a 7-tuple
(Q,Σ, τ, δ, q0,Z0,F)
where , Q= finite non-empty set of states

Σ= finite non-empty set of input symbols
τ= finite non-empty set of pushdown symbols
q0= initial state
Z0= initial symbol on pushdown store
F= set of final states
δ =⇒ Q × (Σ ∪ {∧})× τ → Q × τ∗

Pushdown Automata

δ =⇒ Q × (Σ ∪ {∧})× τ → Q × τ∗

▶ Each move of the control unit is determined by the current
input symbol as well as by the symbol currently on the top of
the stack.

▶ The result of the move is a new state of control unit and a
change in the top of the stack.

Instantaneous Description (ID) Let A = (Q,Σ, τ, δ, q0,Z0,F) be
a pda. An instantaneous description (ID) is (q,w , α), where
q ∈ Q,w ∈ Σ∗ and α ∈ τ∗.

▶ An initial ID is (qo,w ,Z0). This means that initially the pda
is in the initial state q0, the input string to be processed is w
and the PDS has only one symbol, namely Z0.

▶ In an ID (q,∧,Z), In this case the pda makes a ∧-move.

Pushdown Automata

▶ A move relation, denoted by ⊢ between IDs is defined as

(q, a1a2 . . . an,Z1Z2 . . .Zm) ⊢ (q′, a2 . . . an, βZ2 . . .Zm)

if δ(q, a1,Z1) = (q′, β)

▶ if (q1, x , α) ⊢∗ (q2,∧, β) then for every y ∈ Σ∗,
(q1, xy , α) ⊢∗ (q2, y , β)

▶ Conversely, if (q1, xy , α) ⊢∗ (q2, y , β) for some y ∈ Σ∗, then
(q1, x , α) ⊢∗ (q2,∧, β)

▶ if (q1, x , α) ⊢∗ (q2,∧, β) then for every γ ∈ τ∗,
(q1, x , αγ) ⊢∗ (q2,∧, βγ)

NPDA: Example

▶ Consider a NPDA as under:
Q = {q0, q1, q2, q3}, Σ = {a, b}
τ = {a,Z0}, Z0, F = {q3} and
δ(q0, a,Z0) = (q0, aZ0)
δ(q0, a, a) = (q0, aa)
δ(q0, b, a) = (q1,∧)
δ(q1, b, a) = (q1,∧)
δ(q1,∧,Z0) = (qf ,Z0)
What can we say about the action of this automaton?

Language accepted by a PDA

Acceptance of input strings by pda is of two way:

1 Acceptance by Final State

2 Acceptance by Null Store

Let M =(Q,Σ, τ, δ, q0,Z0,F) be a non-deterministic push-down
automata. The language accepted by M is the set
L(M) = {w ∈ Σ∗|(q0,w ,Z0)⊢∗

M(q′,Λ, α)}
where q′ ∈ F and α ∈ τ∗

Example: Construct a NPDA for the language
L = {w ∈ {a, b}∗|na(w) = nb(w)}
Solution: Q = {q0, qf },Σ = {a, b}, τ = {a, b,Z},F = {qf }
Let M= {Q, Σ, τ, δ, q0,Z ,F}
δ(q0, a,Z) = (q0, aZ)
δ(q0, b,Z) = (q0, bZ)
δ(q0, a, a) = (q0, aa)
δ(q0, b, b) = (q0, bb)
δ(q0, a, b) = (q0,Λ)

Language accepted by a PDA

δ(q0, b, a) = (q0,Λ)
δ(q0,Λ,Z) = (qf ,Z)
Let us assume w = baab to process
(q0, baab,Z) ⊢
(q0, aab, bZ) ⊢
(q0, ab,Z) ⊢
(q0, b, aZ) ⊢
(q0,Λ,Z) ⊢
(qf ,Λ,Z)

Language accepted by PDA

Let A =(Q,Σ, τ, δ, q0,Z0,F) be a non-deterministic push-down
automata. The language accepted by null store or empty store A is
the set N(A) = {w ∈ Σ∗|(q0,w ,Z0)⊢∗

A(q,Λ,Λ)}
where q ∈ Q

Theorem
If A = (Q,Σ, τ, δ, q0,Z0,F) is a pda accepting L by empty store.
we can find a pda B = (Q ′,Σ, τ ′, δ′, q′0,Z0,F

′) accepting L by final
state: i.e. L = N(A) = T (B).

Theorem
If A = (Q,Σ, τ, δ, q0,Z0,F) accepts L by final state, we can find a
pda B accepting L by empty store: i.e. L = T (A) = N(B).

Language accepted by PDA

Question: Construct a NPDA for accepting the language
L={wwR : w ∈ {a, b}+ }
Solution: M=(Q,Σ, τ , δ, q0, z, F)
where Q= {q0, q1, q2}, Σ={a,b}
τ= {a,b,z}, F={q2}
δ(q0, a, a) = (q0, aa), δ(q0, b, a) = (q0, ba)
δ(q0, a, b) = (q0, ab), δ(q0, b, b) = (q0, bb)
δ(q0, a, z) = (q0, az), δ(q0, b, z) = (q0, bz)
For middle:
δ(q0,Λ, a) = (q1, a), δ(q0,Λ, b) = (q1, b)
For matching wR against contents of stack
δ(q1, a, a) = (q1,Λ) , δ(q1, b, b) = (q1,Λ)
Finally, δ(q1,Λ, z) = (q2, z)
Let the String assumed be ’abba’:
(q0, abba, z) ⊢ (q0, bba, az) ⊢ (q0, ba, baz) ⊢ (q1, ba, baz)
⊢ (q1, a, az) ⊢ (q1,Λ, z) ⊢ (q2, z)

Language accepted by a PDA

1. Construct a NPDA that accepts the language
L={anbm: n≥0, n ̸=m}

2. Find NPDA on Σ={a,b,c} that accepts the language
L={w1cw2: w1,w2 ∈ {a, b}∗, w1 ̸= w2

R}

CFG to PDA

Theorem
If L is a context-free language, then we can construct a pda A
accepting L by empty store, i.e. L = N(A).

Construction of pda A Let L = L(G), where G = (V ,Σ,P, S) is a
context-free grammar. We construct a pda A as
A = ({q},Σ,V ∪ Σ, δ, q,S , ϕ), where δ is defined by the following
rules:

R1 For every A → α in P, δ(q,∧,A) = {(q, α)}
R2 For every a in Σ, δ(q, a, a) = {(q,∧)}

CFG to PDA

▶ Construct a PDA that accepts the language generated by the
grammar with productions
S → aSA|a, A → bB, B → b
Solution: Step-1 The given productions are:
S → aSA|a
A → bB
B → b
δ is defined by the following rules:
S-productions
δ(q,∧,S) = {(q, aSA), (q, a)}
A-productions
δ(q,∧,A) = {(q, bB)}
B-productions
δ(q,∧,B) = {(q, b)}
Productions for Σ
δ(q, a, a) = {(q,∧)}

CFG to PDA

δ(q, b, b) = {(q,∧)}
Appearance of Λ on top of stack implies completion of
derivation and PDA is put to final state by
δ(q,Λ,Z) = (qf ,Λ)

CFG to PDA

Question: Consider the grammar
S → aA, A →aABC |bB |a, B →b, C →c
Solution: Putting Start Symbol on stack
δ(q0,Λ,Z) = (q1, SZ)
Final Production: δ(q1,Λ,Z) = (qf ,Z)
Now, according to the productions
δ(q1, a,S) = (q1,A), δ(q1, a,A) = (q1,ABC),
δ(q1, b,A) = (q1,B), δ(q1, a,A) = (q1,Λ), δ(q1, b,B) = (q1,Λ),
δ(q1, c ,C) = (q1,Λ)
Let the derivation be
S → aA → aaABC → aaaBC → aaabC → aaabc
Therefore, the sequence of moves by M for the processing of
”aaabc” is:
(q0, aaabc,Z) ⊢ (q1, aaabc,SZ) ⊢ (q1, aabc,AZ)
⊢ (q1, abc,ABCZ) ⊢ (q1, bc,BCZ) ⊢ (q1, c ,CZ) ⊢ (q1,Λ,Z)
⊢ (qf ,Λ,Z)

CFG to PDA

Question Construct a PDA ’A’ equivalent to the following Context
free grammar:
S → 0BB, B → 0S |1S |0.
Test whether 010000 is in N(A).
Solution: Let A =({q},{0,1},{S,B,0,1},δ,q,S,ϕ)
δ is defined by following rules:
δ(q,Λ,Z) = (q, SZ)
δ(q, 0,S) = (q,BB)
δ(q, 0,B) = (q,S)
δ(q, 1,B) = (q,S)
δ(q, 0,B) = (q,Λ)
δ(q,Λ,Z) = (qf ,Λ)
Let the derivation be:
S → 0BB → 01SB → 010BBB → 010000
Acceptability of 010000:
(q,010000,Z) ⊢ (q,010000,SZ) ⊢ (q,10000,BB) ⊢ (q,0000,SB) ⊢
(q,000,BBB) ⊢ (q, 00,BB) ⊢ (q,0,B) ⊢ (q,Λ,Z) ⊢ (qf ,Λ)

PDA to CFG

Theorem
If A = (Q,Σ, τ, δ, q0,Z0,F) is a pda then there exists a
context-free grammar G such that L(G) = N(A).

Construction of G for CFG
We define G = (V ,Σ,P, S), where
V = {S} ∪ {[q,Z , q′]|q, q′ ∈ Q,Z ∈ τ} i.e. any element of V is
either the new symbol S acting as the start symbol for G or an
ordered triple whose first and third elements are states and the
second element is a pushdown symbol. The productions in P are
induced by moves of pda as follows:

R1 S-productions are given by S → [q0,Z0, q] for every q ∈ Q.

R2 Each transition erasing a pushdown symbol given by
δ(q, a,Z) = (q′,Λ) induces the production [q,Z , q′] → a

PDA to CFG

R3 Each transition not erasing a pushdown symbol giving by
δ(q, a,Z) = (q1,Z1Z2 . . .Zm) induces the production
[q,Z , q′] → a[q1,Z1, q2][q2,Z2, q3] . . . [qm,Zm, q

′], where each
of the states q′, q2, . . . , qm can be any state in Q

PDA to CFG

1. S → [q0,Z0, qi]

2. δ(q, a,Z)= (q′,Λ)
[q,Z , q′] → a

3. δ(q,Λ,Z)= (q′,Λ)
[q,Z , q′] → Λ

4. δ(q, a,Z) = (q′, b)
[q,Z , qi] → a[q′, b, qi]

5. δ(q, a,Z) = (q′, bX)
[q,Z , qi] → a[q′, b, . . .][. . . ,X , qi]

6. δ(q, a,Z) = (q′, bXY)
[q,Z , qi] = a[q′, b, . . .][. . . ,X , . . .][. . . ,Y , qi]

PDA to CFG

Question: Construct a Context free grammar G which accepts
N(A), where A=({q0, q1},{a,b},{Z0,Z}, δ, q0,Z0, ϕ) and δ is given
by:
δ(q0, b,Z0) = (q0,ZZ0), δ(q0,Λ,Z0) = (q0,Λ)
δ(q0, b,Z) = (q0,ZZ), δ(q0, a,Z) = (q1,Z)
δ(q1, b,Z) = (q1,Λ), δ(q1, a,Z0) = (q0,Z0)
Solution: Let G=(VN , {a, b},P, S)
VN = {S , [q0,Z0, q0], [q0,Z0, q1], [q1,Z0, q0], [q1,Z0, q1],
[q0,Z , q0], [q0,Z , q1], [q1,Z , q0], [q1,Z , q1]}
The Productions are:
Initial: S → [q0,Z0, q0], [q0,Z0, q1]
For δ(q0, b,Z0) = (q0,ZZ0)
[q0Z0 . . .] → b[q0Z . . .][. . .Z0 . . .]
[q0Z0 . . .] → b[q0Z . . .][. . .Z0 . . .]
[q0Z0 . . .] → b[q0Z . . .][. . .Z0 . . .]
[q0Z0 . . .] → b[q0Z . . .][. . .Z0 . . .]

PDA to CFG

Question: Construct a Context free grammar G which accepts
N(A), where A=({q0, q1},{a,b},{Z0,Z}, δ, q0,Z0, ϕ) and δ is given
by:
δ(q0, b,Z0) = (q0,ZZ0), δ(q0,Λ,Z0) = (q0,Λ)
δ(q0, b,Z) = (q0,ZZ), δ(q0, a,Z) = (q1,Z)
δ(q1, b,Z) = (q1,Λ), δ(q1, a,Z0) = (q0,Z0)
Solution: Let G=(VN , {a, b},P, S)
VN = {S , [q0,Z0, q0], [q0,Z0, q1], [q1,Z0, q0], [q1,Z0, q1],
[q0,Z , q0], [q0,Z , q1], [q1,Z , q0], [q1,Z , q1]}
The Productions are:
Initial: S → [q0,Z0, q0], [q0,Z0, q1]
For δ(q0, b,Z0) = (q0,ZZ0)
[q0Z0q0] → b[q0Zq0][q0Z0q0]
[q0Z0q0] → b[q0Zq1][q1Z0q0]
[q0Z0q1] → b[q0Zq0][q0Z0q1]
[q0Z0q1] → b[q0Zq1][q1Z0q1]

PDA to CFG

For δ(q0,∧,Z0) = (q0,∧)
[q0Z0q0] → ∧
(q0, b,Z) = (q0,ZZ)
[q0Z . . .] → b[q0Z . . .][. . .Z . . .]
[q0Z . . .] → b[q0Z . . .][. . .Z . . .]
[q0Z . . .] → b[q0Z . . .][. . .Z . . .]
[q0Z . . .] → b[q0Z . . .][. . .Z . . .]

PDA to CFG

For δ(q0,∧,Z0) = (q0,∧)
[q0Z0q0] → ∧
(q0, b,Z) = (q0,ZZ)
[q0Zq0] → b[q0Zq0][q0Zq0]
[q0Zq0] → b[q0Zq1][q1Zq0]
[q0Zq1] → b[q0Zq0][q0Zq1]
[q0Zq1] → b[q0Zq1][q1Zq1]
For (q0, a,Z) = (q1,Z)
[q0Z . . .] → a[q1Z . . .]
[q0Z . . .] → a[q1Z . . .]

PDA to CFG

For δ(q0,∧,Z0) = (q0,∧)
[q0Z0q0] → ∧
(q0, b,Z) = (q0,ZZ)
[q0Zq0] → b[q0Zq0][q0Zq0]
[q0Zq0] → b[q0Zq1][q1Zq0]
[q0Zq1] → b[q0Zq0][q0Zq1]
[q0Zq1] → b[q0Zq1][q1Zq1]
For (q0, a,Z) = (q1,Z)
[q0Zq0] → a[q1Zq0]
[q0Zq1] → a[q1Zq1]
For δ(q1, b,Z) = (q1,∧)
[q1,Z , q1] → b
For δ(q1, a,Z0) → (q0,Z0)
[q1,Z0, . . .] → a[q0Z0 . . .]
[q1,Z0, . . .] → a[q0Z0 . . .]

PDA to CFG

For δ(q0,∧,Z0) = (q0,∧)
[q0Z0q0] → ∧
(q0, b,Z) = (q0,ZZ)
[q0Zq0] → b[q0Zq0][q0Zq0]
[q0Zq0] → b[q0Zq1][q1Zq0]
[q0Zq1] → b[q0Zq0][q0Zq1]
[q0Zq1] → b[q0Zq1][q1Zq1]
For (q0, a,Z) = (q1,Z)
[q0Zq0] → a[q1Zq0]
[q0Zq1] → a[q1Zq1]
For δ(q1, b,Z) = (q1,∧)
[q1,Z , q1] → b
For δ(q1, a,Z0) → (q0,Z0)
[q1,Z0, q0] → a[q0Z0q0]
[q1,Z0, q1] → a[q0Z0q1]

PDA to CFG

1. Let M=({q0, q1},{a,b},{a,Z0}, δ, q0,Z0, ϕ)
where productions are
δ(q0, a,Z0) = (q0, aZ0)
δ(q0, a, a) = (q0, aa)
δ(q0, b, a) = (q1,∧)
δ(q1, b, a) = (q1,∧)
δ(q1,∧,Z0) = (q1,∧)
Find grammar G.

2. Find a context free grammar that generates the language
accepted by NPDA
M=({q0, q1},{a,b},{A,Z},δ,q0,Z,{q1}) with transitions
δ(q0, a,Z) = (q0,AZ)
δ(q0, b,A) = (q0,AA)
δ(q0, a,A) = (q1,Λ)

PDA to CFG

Example: Construct a PDA accepting {anbman|m, n ≥ 1} by null
store. Construct the corresponding CFG accepting the same set.
Solution: The PDA ’A’ accepting {anbman|m, n ≥ 1} is defined as
A=({q0, q1},{a,b},{a,Z0}, δ, q0,Z0, ϕ)
where δ is defined by:
δ(q0, a,Z0) = (q0, aZ0)
δ(q0, a, a) = (q0, aa)
δ(q0, b, a) = (q1, a)
δ(q1, b, a) = (q1, a)
δ(q1, a, a) = (q1,∧)
δ(q1,∧,Z0) = (q1,∧)
Let the required grammar G=(VN , {a, b},P,S)
VN =
(S , [q0Z0q0], [q0Z0q1], [q1Z0q0], [q1Z0q1], q0aq0], [q0aq1], [q1aq0], [q1aq1])
. . .

Exercise

1. What do you understand by LL(k) grammar? Explain with a
suitable example.

2. What do you understand by Parsing? How Top-Down Parsing
is different from Bottom-Up Parsing? Explain with suitable
example.

3. What is left factoring? How is it different from Left recursion?

4. Construct a PDA accepting the set of ll even-length
palindromes over {a,b} by the empty store.

Turing Machine

▶ A Turing Machine’s storage can be visualized as a single, one
dimensional array of cells, each of which can hold a single
symbol.

▶ This array extends infinitely in both directions.

▶ Information can be read and changed in any order, such
storage device is called Tape.

▶ Turing Machine has neither an input file nor any special
output mechanism, whatever input and output is required will
be done on machine’s tape.

Turing Machine

▶ A Turing machine M is defined by
M=(Q, Σ, τ, δ, q0,□,F)
where, Q = set of internal states
Σ = Input alphabet; Σ ⊆ τ − {□}
τ = finite set of symbols called tape alphabet
δ = transition function
Q × τ → Q × τ × {L,R}
□ ∈ τ = special symbol called blank
q0 ∈ Q =initial state
F ⊆ Q = set of final states

Turing Machine

▶ The current state of the control unit and the current tape
symbol being read determines the new state of the control
unit and new tape symbol which replaces the old one and
move the head L or R.

▶ δ(q0, a) = (q1, b,R)

▶ The acceptability of a string is decided by the reachability
from the initial state to some final state. So the final states
are also called the accepting states.

▶ A Turing machine is said to halt whenever it reaches a
configuration for which δ is not defined.
=⇒ No transitions are defined for any final state, so the
Turing machine will halt whenever it enters a final state.

Turing Machine

▶ Consider the Turing machine defined by: Q={q0, q1},
Σ={0,1}, τ = {0, 1,□}, F ={q1} and
δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)
δ(q0,□) = (q1,□, L)

▶ Q={q0, q1, q2}, Σ={a,b}, τ = {a, b,□}
Let F be empty. Define δ by:
δ(q0, a) = (q1, a,R)
δ(q0, b) = (q1, a,R)
δ(q0,□) = (q1,□, L)
δ(q1, a) = (q0, a, L)
δ(q1, b) = (q0, b, L)
δ(q1,□) = (q2,□,R)

Representation of Turing Machines

Turing machine can be represented by tree ways:

▶ Instantaneous Descriptions (ID) using move-relations
▶ δ(q1, xi) = (q2, y ,R)

x1x2 . . . q1xi . . . xn ⊢ x1x2 . . . yq2xi+1 . . . xn
▶ δ(q1, xi) = (q2, y , L)

x1x2 . . . q1xi . . . xn ⊢ x1x2 . . . q2xi−1y . . . xn
▶ δ(q1, xn) = (q2, y ,R)

x1x2 . . . q1xn ⊢ x1x2 . . . yq2□
Because the tape is of infinite length having □.

▶ δ(q1, x1) = (q2, y , L)
q1x1x2 . . . xn ⊢ q2yx2 . . . xn
Because we prevent the machine from going off the left-hand
end of the tape

▶ Transition table

Representation of Turing Machines

▶ Transition diagram (transition graph)

Representation of Turing Machines

Language acceptability of Turing Machine

▶ Consider the Turing machine M = (Q,Σ, τ, δ, q0,□,F). A
string w ∈ Σ∗ is said to be accepted by M if qow ⊢∗ α1qα2

for some q ∈ F and α1, α2 ∈ τ∗

▶ M does not accept w if the machine M either halts in a
non-accepting state or does not halt.

▶ There are other equivalent definitions of acceptance by the
Turing machine, we will not discuss them now.

Design of TM

The basic guidelines for designing a Turing machine:

▶ The fundamental objective in scanning a symbol by the R/W
head is to know what to do in the future. The machine must
remember the past symbols scanned. The Turing machine can
remember this by going to the next unique state.

▶ The number of states must be minimized. This can be
achieved by changing the states only when there is a change
in the written symbol or when there is a change in the
movement of the R/W head.

Design of Turing Machine
Question: For Σ= {a,b}, design a Turing machine that accepts
L={anbn : n ≥ 1}
Solution:

▶ Start with left most ’a’, replace it by ’x’

▶ Travel righ to find left most ’b’, replace it by ’y’.

▶ Move left again to find left most ’a’, replace by ’x, then again right to left most
’b’, replace by ’y’.

▶ Continue moving right and left till no ’a’ and ’b’ remains, then the string must
be in L.

Q={q0, q1, q2, q3, q4}, F={q4}
Σ = {a, b}, τ = {a, b, x , y ,□}
δ(q0, a) = (q1, x ,R) =⇒ replaces ’a’ by ’x’
δ(q1, a) = (q1, a,R) =⇒ move right
δ(q1, y) = (q1, y ,R) =⇒ move right
δ(q1, b) = (q2, y , L) =⇒ ’a’ paired with ’b’
Move left to find ’x’
δ(q2, y) = (q2, y , L) =⇒ move left
δ(q2, a) = (q2, a, L) =⇒ move left
δ(q2, x) = (q0, x ,R) =⇒ placed at first ’a’
Check for all ’a’ and ’b’ are replaced
δ(q0, y) = (q3, y ,R)
δ(q3, y) = (q3, y ,R)

Design of Turing Machine

δ(q3,□) = (q4,□,R)
For input ’aabb’

q0aabb ⊢ xq1abb ⊢ xaq1bb ⊢ xq2ayb ⊢ q2xayb ⊢ xq0ayb ⊢ xxq1yb ⊢ xxyq1b ⊢
xxq2yy ⊢ xq2xyy ⊢ xxq0yy ⊢ xxyq3y ⊢ xxyyq3 ⊢ xxyy□q4□

Design of Turing machine

Question: Design a Turing Machine that accepts
L={anbncn : n ≥ 1}

Turing Computable

A function ’f’ with domain ’D’ is said to be Turing computable or
just computable, if there exists some Turing machine M=(Q,
Σ, τ, δ, q0,□, F) such that q0w ⊢∗

M qf f (w), qf ∈ F for all w∈ D.

Turing Computable

Example

Given two positive integers ’x’ and ’y’. Design a Turing machine
that computes x+y
Solution: Using Unary notation in which any positive integer ’x’ is
represented by w(x) ∈ {1}+ such that |w(x)|=x.
So, the required machine is: q0w(x)0w(y) ⊢ ∗qf w(x + y)0
Steps: Move the separating 0 to right end of w(y)
Let M=(Q,Σ, τ, q0,□,F)
Q={q0, q1, q2, q3, q4}, F={q4}
δ(q0, 1) = (q0, 1,R), δ(q0, 0) = (q1, 1,R), δ(q1, 1) = (q1, 1,R),
δ(q1,□) = (q2,□, L), δ(q2, 1) = (q3, 0, L), δ(q3, 1) = (q3, 1, L)
δ(q3,□) = (q4,□,R)
Adding 111 to 11
q0111011 ⊢ 1q011011 ⊢ 11q01011 ⊢ 111q0011 ⊢ 1111q111 ⊢ . . .

Variation of TM

▶ Turing Machine with Stationary Head

▶ Storage in the State

▶ Multiple Track Turing Machine

▶ Subroutines

▶ Multitape Turing Machines

▶ Nondeterministic Turing Machines

Universal TM

A universal Turing machine is a Turing machine Tu that works as
follows:
▶ It is assumed to receive an input string of the form e(T)e(z),

where T is an arbitrary TM, z is a string over the input
alphabet of T , and e is an encoding function whose values
are strings in {0, 1}∗. The computation performed by Tu on
this input string satisfies two properties:

1. Tu accepts the string e(T)e(z) if and only if T accepts z .
2. If T accepts z and produces output y , then Tu produces

output e(y).

Encoding Function

We assume that there is an infinite set S = {a1, a2, a3, . . . } of
symbols, where a1 = ∆ = blank, such that the tape alphabet of
every Turing machine T is a subset of S.
If T = (Q,Σ, τ, q0, δ) is a TM and z is a string, we define the
strings e(T) and e(z) as follows:

▶ First we assign numbers to each state, tape symbol, and tape
head direction of T .

▶ Each tape symbol, including ∆, is an element ai of S, and it is
assigned the number n(ai) = i .

▶ The accepting state ha, the rejecting state hr , and the initial
state q0 are assigned the numbers n(ha) = 1, n(hr) = 2, and
n(q0) = 3.

▶ The other elements q ∈ Q are assigned distinct numbers n(q),
each at least 4.

Encoding Function

▶ We don’t require the numbers to be consecutive, and the
order is not important.

▶ The three directions R, L, and S are assigned the numbers
n(R) = 1, n(L) = 2, and n(S) = 3

▶ For each move m of T of the form δ(p, a) = (q, b,D)

e(m) = 1n(p)01n(a)01n(q)01n(b)01n(D)0

▶ List the moves of T in any order as m1, . . . ,mk . and define
e(T) as:

e(T) = e(m1)0e(m2)0 . . .)0(mk)0

▶ If z = z1z2 . . . zj is a string, where each zi ∈ S

e(z) = 01n(z1)01n(z2)0 . . . 01n(zj)0

Encoding Function

▶ The input to UTM will be e(T)e(z)

▶ Example: Let T be the TM shown in below figure, which
transforms an input string of a’s and b’s by changing the
leftmost a, if there is one, to b.

Encoding Function

▶ Solutions:We assume for simplicity that n(a) = 2 and
n(b) = 3. By definition, n(q0) = 3, and we let n(p) = 4 and
n(r) = 5.

▶ If m is the move determined by the formula
δ(q0,∆) = (p,∆,R), then

e(m) = 130101401010 = 111010111101010

▶ if we encode the moves in the order they appear in the
diagram, left to right
e(T) = 111010111010100111101110111101110100
11110110111110111011001111010111110101100
11111011101111101110110011111010101011100

▶ Let the string to be checked for acceptance is ∆aab

e(z) = 0101101101110

Encoding Function

▶ Input to the UTM is e(T)e(z)
= 111010111010100111101110111101110100
11110110111110111011001111010111110101100
111110111011111011101100111110101010111000101101101110

▶ We will use three tapes. The first tape is for input and output
and originally contains the string e(T)e(z), where T is a TM
and z is a string over the input alphabet of T .

▶ The second tape will correspond to the working tape of T ,
during the computation that simulates the computation of T
on input z .

▶ The third tape will have only the encoded form of T’s current
state.

▶ Tu starts by transferring the string e(z), except for the initial
0, from the end of tape 1 to tape 2, beginning in square 3.

Encoding Function

▶ Since T begins with its leftmost square blank, Tu writes 10,
the encoded form of ∆, in squares 1 and 2.

▶ Square 0 is left blank, and the tape head begins on square 1.

▶ The second step is for Tu to write 111, the encoded form of
the initial state q0, on tape 3, beginning in square 1.

▶
∆1110101110101001111011101111011101001111011011111011101100111101011. . . .
∆10110110111∆
∆111∆

▶ Now we simulate the UTM by finding the pattern for state q
from tape 3 followed by code of the 0e(zi)0 from tape 2 under
R/W head.

▶ When pattern is found, copy 1st part as state on tape 3,
replace e(zi) by 2nd part from tape 1 and move the R/W
head as per the encoded value of direction in part 3 on tape 1.

Encoding Function

▶ We repeat the above two steps until we found state ha = 1

▶ In the last, when T halt with acceptance means on the 3rd
tape ha = 1, we erase the contents of 1st tape and copy the
encoded output of UTM on 2nd tape to the 1st tape.

Church-Turing Thesis

To say that the Turing machine is a general model of computation
means that any algorithmic procedure that can be carried out at
all, by a human computer or a team of humans or an electronic
computer, can be carried out by a TM. This statement was first
formulated by Alonzo Church in the 1930s and is usually referred
to as Church’s thesis, or the Church-Turing thesis. It is not a
mathematically precise statement that can be proved, because we
do not have a precise definition of the term algorithmic procedure.
By now, however, there is enough evidence for the thesis to have
been generally accepted. Here is an informal summary of some of
the evidence.

Church-Turing Thesis

▶ The nature of the model makes it seem likely that all the steps
crucial to human computation can be carried out by a TM.
Humans normally work with a two-dimensional sheet of paper,
and a human computer may perhaps be able to transfer his
attention to a location that is not immediately adjacent to the
current one, but enhancements like these do not appear to
change the types of computation that are possible. A TM
tape could be organized so as to simulate two dimensions; one
likely consequence would be that the TM would require more
moves to do what a human could do in one.

▶ Various enhancements of the TM model have been suggested
in order to make the operation more like that of a human
computer, or more convenient, or more efficient. The
multitape TM discussed is an example. In each case, it has
been shown that the computing power of the device is
unchanged.

Church-Turing Thesis

▶ Other theoretical models of computation have been proposed.
These include abstract machines such as the ones with two
stacks or with a queue, as well as machines that are more like
modern computers. In addition, various notational systems
(programming languages, grammars, and other formal
mathematical systems) have been suggested as ways of
describing or formulating computations. Again, in every case,
the model has been shown to be equivalent to the Turing
machine.

▶ Since the introduction of the Turing machine, no one has
suggested any type of computation that ought to be included
in the category of “algorithmic procedure” and cannot be
implemented on a TM.

Characteristic Function

For a language L ⊆ Σ∗, the characteristic function of L is the
function χL : Σ∗ → {0, 1} defined by

χL(x) =

{
1 if x ∈ L

0 if x /∈ L

▶ Computing the function χL and accepting the language L are
two approaches to the question of whether an arbitrary string
is in L or not.

▶ A TM computing χL indicates whether the input string is in L
by producing output 1 or output 0.

▶ A TM accepting L indicates the same thing by accepting or
not accepting the input.

Accepting a Language and Deciding a Language

▶ A Turing machine T with input alphabet Σ accepts a
language L ⊆ Σ∗ if L(T) = L.

▶ T decides L if T computes the characteristic function
χL : Σ∗ → {0, 1}.

▶ A language L is recursively enumerable if there is a TM that
accepts L, and L is recursive if there is a TM that decides L.

▶ Recursively enumerable languages are sometimes referred to
as Turing-acceptable, and recursive languages are sometimes
called Turing-decidable, or simply decidable.

▶ Every recursive language is recursively enumerable.

▶ The main difference is that in recursively enumerable language
the machine halts for input strings which are in language L.
but for input strings which are not in L, it may halt or may
not halt. When we come to recursive language it always halt
whether it is accepted by the machine or not.

Accepting a Language and Deciding a Language

▶ If L ⊆ Σ∗ is accepted by a TM T that halts on every input
string, then L is recursive.

▶ If L ⊆ Σ∗ is accepted by a TM T that halts on every input
string x when x ∈ L and may or may not halt when x /∈ L
then L is recursively enumerable.

Unrestricted Grammars

▶ The unrestricted grammars correspond to recursively
enumerable languages in the same way that CFGs correspond
to languages accepted by PDAs and regular grammars to
those accepted by DFAs

▶ An unrestricted grammar is a 4-tuple G = (V ,Σ,P, S), where
V and Σ are disjoint sets of variables and terminals,
respectively. S is an element of V called the start symbol, and
P is a set of productions of the form α→ β where
α, β ∈ (V ∪ Σ)∗ and α contains at least one variable

▶ For every unrestricted grammar G, there is a Turing machine
T with L(T) = L(G).

▶ For every Turing machine T with input alphabet Σ, there is an
unrestricted grammar G generating the language L(T) ⊆ Σ∗.

Unrestricted Grammars

▶ A context-sensitive grammar (CSG) is an unrestricted
grammar in which no production is length-decreasing.

▶ In other words, every production is of the form α→ β, where
|β| ≥ |α|.

▶ No variable is allowed in β whose value is null.

▶ A language is a context-sensitive language (CSL) if it can be
generated by a context-sensitive grammar.

▶ Example Write the production for the language
L = {anbncn|n ≥ 1}

Unrestricted Grammars

▶ Solution: S → SABC |ABC ,
BA → AB,
CA → AC ,
CB → BC ,
A → a,
aA → aa,
aB → ab,
bB → bb,
bC → bc,
cC → cc .

Linear Bounded Automata

▶ This model is important because (a) the set of
context-sensitive languages is accepted by the model and (b)
the infinite storage is restricted in size but not in accessibility
to the storage in comparison with the Turing machine model.

▶ It is called the linear bounded automaton (LBA) because a
linear function is used to restrict (to bound) the length of the
tape.

▶ A linear bounded automaton is a non-deterministic Turing
machine which has a single tape whose length is not infinite
but bounded by a linear function of the length of the input
string.

▶ The models can be described formally by the following set
format:
M = (Q,Σ, τ, δ, q0, b, §, $,F)

Linear Bounded Automata

▶ All the symbols have the same meaning as in the basic model
of Turing machines with the difference that the input alphabet
Σ contains two more special symbols § and $ also.

▶ § is called the left-end marker which is entered in the leftmost
cell of the input tape and prevents the R/W head from
getting off the left end of the tape.

▶ $ is called the right-end marker which is entered in the
rightmost cell of the input tape and prevents the R/W head
from getting off the right end of the tape.

▶ Both the end-markers should not appear on any other cell
within the input tape, and the R/W head should not print any
other symbol over both the end-markers.

▶ Let us consider the input string w with |w | = n − 2.

Linear Bounded Automata

▶ The input string w can be recognized by an LBA if it can also
be recognized by a Turing machine using no more than kn
cells of input tape, where k is a constant specified in the
description of LBA.

▶ The value of k does not depend on the input string but is
purely a property of the machine.

▶ Whenever we process any string in LBA, we shall assume that
the input string is enclosed within the end-markers § and $.

▶ The model of LBA can be represented by the block below
diagram:

Linear Bounded Automata

Linear Bounded Automata

▶ There are two tapes: one is called the input tape, and the
other is working tape.

▶ On the input tape the head never prints and never moves to
the left.

▶ On the working tape the head can move in any direction Left
or Right and can modify the contents in any way, without any
restriction.

▶ In the case of LBA, an ID is denoted by (q,w , i), where
q ∈ Q,w ∈ τ and i is some integer between 1 and n.

▶ The transition of IDs is similar except that i changes to i − 1
if the R/W head moves to the left and to i + 1 if the head
moves to the right.

Linear Bounded Automata

▶ The language accepted by LBA is defined as the set

{w ∈ {Σ− {§, $}}∗|(q0, §w$, 1) ⊢∗ (q, α, i)}

for some q ∈ F and for some integer i between 1 and n,
α ∈ τ∗.

▶ As a null string can be represented either by the absence of
input string or by a completely blank tape, an LBA may
accept the null string.

▶ A linear bounded automaton M accepts a string w if, after
starting at the initial state with R/W head reading the
left-endmarker, M halts over the right-endmarker in a final
state. Otherwise, w is rejected

▶ The set of strings accepted by non-deterministic LBA is the
set of strings generated by the context sensitive grammars,
excluding the null strings.

Linear Bounded Automata

▶ If L is a context-sensitive language, then L is accepted by a
linear bounded automaton and vice versa.

▶ Exercise; Design the LBA for the language
L = {anbncn|n ≥ 1}

Construction of Grammar Corresponding to TM

▶ For understanding the construction. we have to note that a
transition of ID corresponds to a production.

▶ We enclose IDs within brackets. So acceptance of w by M
corresponds to the transformation of initial ID [q0, §w$] into
[qf b].

▶ Also, the ’length’ of ID may change if the R/W head reaches
the left-end or the right-end, i.e. when the left-hand side or
the right-hand side bracket is reached.

▶ So we get productions corresponding to transition of IDs with
(i) Left move (ii) Right move, and (iii) end-markers.

▶ Right move:

Construction of Grammar Corresponding to TM

1.

δ(qi , aj) = (ql , ak ,R)

ID amqiajam+1 ⊢ amakqlam+1

leads to the production

qiaj → akql

2. When at the right-end and right move. When the R/W head
moves to the right of], the length increases. That is

δ(qi ,]) = (qi ,□,R)

ID amqi] ⊢ amqi□]
Corresponding to this we have a production

qi] → qi□]

for all qi ∈ Q

Construction of Grammar Corresponding to TM

3. When □ occurs to the left of], it can be deleted. This is
achieved by the production

aj□] → aj]

for all aj ∈ τ

▶ Left move:

1.

δ(qi , aj) = (ql , ak , L)

ID amqiaj ⊢ qlamak leads to the production

amqiaj → qlamak

for all am ∈ τ

Construction of Grammar Corresponding to TM

2. When at the left-end and left move

δ(qi , aj) = (ql , ak , L)

ID [qiaj ⊢ [ql□ak
leads to the production

[qiaj → [ql□ak

3. When □ occurs next to the left-bracket, it can be deleted.
This is achieved by including the production

[□ → [

▶ Introduction of end-markers: For introducing end-markers for
the input string, the following productions are included, where
q0 is the initial state and qf is the final state:

1. ai → [q0§ai for ai ∈ τ, ai ̸= □
2. ai → ai$] for ai ∈ τ, ai ̸= □

Construction of Grammar Corresponding to TM

3. For removing the brackets from [qf□], we include the
production

[qf□] → S

▶ To get the required grammar, reverse the arrows of the
productions obtained above.

▶ The productions we get can be called inverse productions.

▶ The new grammar is called the generative grammar.

Construction of Grammar Corresponding to LBA

▶ A linear bounded automaton M accepts a string w if, after
starting at the initial state with R/W head reading the
left-end marker, M halts over the right-end marker in a final
state. Otherwise, w is rejected.

▶ The production rules for the generative grammar are
constructed as in the case of Turing machines.

▶ The following additional productions are needed in the case of
LBA:

1. aiqf $ → qf $ for all ai ∈ τ
2. §qf $ → §qf
3. §qf → qf

Exercise: Find the grammar generating the set accepted by a linear
bounded automaton M whose transition table is given below:

Construction of Grammar Corresponding to LBA

CYK Algorithm

▶ The algorithm is called the CYK algorithm, after its
originators J. Cocke, D. H. Younger, and T. Kasami.

▶ The algorithm works only if the grammar is in Chomsky
normal form and succeeds by breaking one problem into a
sequence of smaller ones in the following way.

▶ Assume that we have a grammar G = (V, T, S, P) in
Chomsky normal form and a string w = a1a2 . . . an.

▶ Define substrings wij = ai . . . aj
▶ Define subsets of V as Vij = {A ∈ V : A ⇒∗ wij}
▶ Clearly, w ∈ L(G) if and only if S ∈ V1n.

▶ To compute Vii , observe that A ∈ Vii if and only if G contains
a production A → ai .

▶ Therefore, Vii can be computed for all 1 ≤ i ≤ n by inspection
of w and the productions of the grammar.

CYK Algorithm

▶ To compute Vij for i < j , A derives wij if and only if there is a
production A → BC , with B ⇒∗ wik and C ⇒∗ wk+1j for
some k with i ≤ k < j .

▶ In other words,
Vij = ∪k=i ...j−1{A : A → BC ,B ∈ Vik ,C ∈ Vk+1j

⇒ {A1|A1 → {Vii}{Vi+1j}} ∪ {A2|A2 → {Vii+1}{Vi+2j}} ∪
· · · ∪ {Al |Al → {Vik}{Vk+1j}} ∪ · · · ∪ {An−1|An−1 →
{Vij−2}{Vj−1j}} ∪ {An|An → {Vij−1}{Vjj}}

▶ Compute all the Vij using the above eq. as:

1. Compute V11,V22, . . . ,Vnn

2. Compute V12,V23, . . . ,Vn−1n

3. Compute V13,V24, . . . ,Vn−2n

4. . . .
5. Compute V1n

▶ If S ∈ V1n then w ∈ L(G) otherwise w /∈ L(G)

CYK Algorithm

Exercise: Determine whether the string w = aabbb is in the
language generated by the grammar:

S → AB

A → BB|a

B → AB|b

Some basic definition

▶ When a Turing machine reaches a final state, it halts.

▶ We can also say that a Turing machine M halts when M
reaches a state q and a current symbol a to be scanned so
that δ(q, a) is undefined.

▶ There are TMs that never halt on some inputs in any one of
these ways.

▶ So we make a distinction between the languages accepted by
a TM that halts on all input strings and a TM that never
halts on some input strings.

▶ Recursively Enumerable: A language L ⊆ Σ∗ is recursively
enumerable if there exists a TM M, such that L = T (M).

▶ Recursive: A language L ⊆ Σ∗ is recursive if there exists some
TM M that satisfies the following two conditions:

1. If w ∈ L then M accepts w , that is. reaches an accepting state
on processing w and halts.

Some basic definition

2. If w /∈ L then M eventually halts, without reaching an
accepting state.

▶ Decidable:A problem with two answers (Yes/No) is decidable
if the corresponding language is recursive. In this case, the
language L is also called decidable.

▶ Undecidable:A problem/language is undecidable if it is not
decidable.

▶ A decidable problem is called a solvable problem and an
undecidable problem an unsolvable problem by some authors.

▶ ADFA = {(B,w)|B accepts the input string w}
▶ ACFG = {(G ,w)| The context-free grammar G accepts the

input string w}
▶ ACSG = {(G ,w)| The context-sensitive grammar G accepts

the input string w}
▶ ATM = {(M,w)| The TM M accepts w}

Some basic definition

▶ ADFA is decidable.

▶ ACFG is decidable.

▶ ACSG is decidable.

▶ ATM is undecidable.

Turing machine halting Problem

▶ The reduction technique is used to prove the undecidability of
halting problem of Turing machine

▶ We say that problem A is reducible to problem B if a solution
to problem B can be used to solve problem A.

▶ If A is reducible to B and B is decidable then A is decidable.
If A is reducible to B and A is undecidable, then B is
undecidable.

▶ Theorem HALTTM = {(M,w)| The Turing machine M halts
on input w} is undecidable.
Proof: We assume that HALTTM is decidable, and get a
contradiction. Let M1 be the TM such that
T (M1) = HALTTM and let M1 halt eventually on all (M,w).
We construct a TM M2 as follows:

1. For M2, (M,w) is an input.
2. The TM M1 acts on (M,w).
3. If M1 rejects (M,w) then M2 rejects (M,w).

Turing machine halting Problem

4. If M1 accepts (M,w), simulate the TM M on the input string
w until M halts.

5. If M has accepted w ,M2 accepts (M,w); otherwise M2 rejects
(M,w).

▶ When M1 accepts (M,w) (in step 4), the Turing machine M
halts on w .

▶ In this case either an accepting state q or a state q′ such that
δ(q′, a) is undefined till some symbol a in w is reached.

▶ In the first case (the first alternative of step 5) M2 accepts
(M.w).

▶ In the second case (the second alternative of step 5) M2

rejects (M,w).

▶ It follows from the definition of M2 that M2 halts eventually.

▶ TM2 = {(M,w)| The Turing machine accepts w} = ATM

▶ This is a contradiction since ATM is undecidable.

Post correspondence problems (PCP)

▶ The Post Correspondence Problem (PCP) was first introduced
by Emil Post in 1946.

▶ The problem over an alphabet Σ belongs to a class of yes/no
problems and is stated as follows:

▶ Consider the two lists x = (x1 . . . xn), y = (y1 . . . yn) of
non-empty strings over an alphabet Σ = {0, 1}.

▶ The PCP is to determine whether or not there exist i1, . . . , im,
where 1 ≤ ij ≤ n such that

xi1 . . . xim = yi1 . . . yim

▶ The indices ij ’s need not be distinct and m may be greater
than n. Also, if there exists a solution to PCP, there exist
infinitely many solutions.

Modified Post correspondence problems

▶ If the first substring used in PCP is always x1 and y1 then the
PCP is known as the Modified Post Correspondence Problem.

Partial and Total Functions

▶ A Partial Function f from X to Y (f : X → Y) is a rule which
assigns to every element of X at most one element of Y .

▶ Example: if R denotes the set of all real numbers, the rule f
from R to R given by f (r) = +

√
r ; is a partial function since

f (r) is not defined as a real number when r is negative.

▶ A Total Function f from X to Y is a rule which assigns to
every element of X a unique element of Y .

▶ Example:The rule f from R to R given by f (r) = |r | is a total
function since f (r) is defined for every real number r .

▶ We consider total functions f from X k to X , where
X = {0, 1, 2, 3, . . . } or X = {a, b}∗.

▶ We denote {0, 1, 2, . . . } by N and {a, b} by Σ.

▶ X k is the set of all k-tuples of elements of X .

▶ For example, f (m, n) = m − n defines a partial function from
N to itself as f (m, n) is not defined when m − n < 0.

Partial and Total Functions

▶ But g(m, n) = m+ n defines a total function from N to itself.

▶ A partial or total function f from X k to X is also called a
function of k variables and denoted by f (x1,X2, . . . ,Xk).

▶ For example, f (x1, x2) = 2x1 + x2 is a function of two
variables: f (1, 2) = 4; 1 and 2 are called arguments and 4 is
called a value.

▶ g(w1,w2) = w1w2 is a function of two variables
w1,w2 ∈ Σ∗ : g(ab, aa) = abaa, ab, aa are called arguments
and abaa is a value.

Primitive Recursive functions

▶ The initial functions over N are given as:

1. Zero function Z defined by Z (x) = 0
2. Successor function S defined by S(x) = x + 1
3. Projection function Un

i defined by Un
i (x1, . . . , xn) = xi

4. As U1
1 (x) = x for every x in N. U1

1 is simply the identity
function. So Un

i is also termed a generalized identity function.

▶ The initial functions over Σ are given as:

1. nil(x) defined by nil(x) = ∧
2. cons a(x) defined by cons a(x) = ax
3. cons b(x) defined by cons b(x) = bx

Primitive Recursive functions

▶ Example:

Z (7) = 0

S(4) = 5

U3
2{2, 5, 7} = 5

nil(aabb) = ∧

cons a(aabb) = aaabb

cons b(aabb) = baabb

Primitive Recursive functions

▶ Composition of a function: If f1, f2, . . . , fk are partial functions
of n variables and g is a partial function of k variables, then
the composition of g with f1, f2, . . . , fk is a partial function of
n variables defined by

g(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fk(x1, x2, . . . , xn))

▶ The composition of g with f1, f2, . . . , fn is total when
g , f1, f2, . . . , fn are total.

▶ Example: Let f1(x , y) = x + y , f2(x , y) = 2x , f3(x , y) = xy
and g(x , y , z) = x + y + z be functions over N. Find the
composition of g with f1, f2, f3

▶ Solution: The composition of g with f1, f2, f3 is given by
h(x , y) = g(f1(x , y), f2(x , y), f3(x , y)) = (x + y) + (2x) + (xy)
= x + y + 2x + xy

Primitive Recursive functions

▶ A function f (x) over N is defined by recursion if there exists a
constant k (a natural number) and a function h(x , y) such
that f (0) = k, f (n + 1) = h(n, f (n)

▶ Example: Define n! by recursion.

▶ Solution: Let f (0) = 1 and f (n + 1) = h(n, f (n)), where
h(x , y) = S(x) ∗ y .
So f (n) will be
f (n) = h(n− 1, f (n− 1)) = S(n− 1) ∗ f (n− 1) = n ∗ f (n− 1)

▶ A function f of n + 1 variables is defined by recursion if there
exists a function g of n variables, and a function h of n + 2
variables, and f is defined as follows:
f (x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn)
f (x1, x2, . . . , xn, y + 1) =
h(x1, x2, . . . , xn, y , f (x1, x2, . . . , xn, y))

Primitive Recursive functions

▶ A total function f over N is called primitive recursive
(i) if it is anyone of the three initial functions, or
(ii) if it can be obtained by applying composition and recursion
a finite number of times to the set of initial functions.

▶ A total function is primitive recursive if it can be obtained by
applying composition and recursion a finite number of times
to primitive recursive functions f1, f2, . . . , fm. Each fi is
obtained by applying composition and recursion a finite
number of times to initial functions.

Primitive Recursive functions

▶ A function f (x) over Σ is defined by recursion if there exists a
’constant’ string w ∈ Σ∗ and functions h1(x , y) and h2(x .y)
such that

f (∧) = w

f (ax) = h1(x , f (x))

f (bx) = h2(x , f (x))

h1 and h2 may be functions in one variable.

Primitive Recursive functions

▶ A function f (x1, x2, . . . , xn) over Σ is defined by recursion if
there exists a function g(x1, x2, . . . , xn−1),
h1(x1, x2, . . . , xn+1), h2(x1, x2, . . . , xn+1) such that

f (∧, x2, . . . , xn) = g(x2, . . . , xn)

f (ax1, x2, . . . , xn) = h1(x1, x2, . . . , xn, f (x1, x2, . . . , xn))

f (bx1, x2, . . . , xn) = h2(x1, x2, . . . , xn, f (x1, x2, . . . , xn))

h1 and h2 may be functions of m variables, where m < n + 1.

▶ A total function f over Σ is primitive recursive
(i) if it is anyone of the three initial functions, or
(ii) if it can be obtained by applying composition and
recursion a finite number of times to the initial functions.

Recursive functions

▶ Let g(x1, x2, . . . , xn, y) be a total function over N. The
function g is a regular function if there exists some natural
number y0 such that g(x1, x2, . . . , xn, y0) = 0 for all values
x1, x2, . . . , xn ∈ N.

▶ Example: g(x , y) = min(x , y) is a regular function since
g(x , 0) = 0 for all x ∈ N.

▶ But f (x , y) = |x − y | is not regular since f (x , y) = 0 only
when x = y , and so we cannot find a fixed y such that
f (x , y) = 0 for all x in N.

▶ A function f (x1, x2, . . . , xn) over N is defined from a total
function g(x1, x2, . . . , xn, y) by minimization if
(a) f (x1, x2, . . . , xn) is the least value of all y ’s such that
g(x1, x2, . . . , xn, y) = 0 if it exists. The least value is denoted
by µy (g(x1, x2, . . . , xn, y) = 0).
(b) f (x1, x2, . . . , xn) is undefined if there is no y such that
g(x1, x2, . . . , xn, y) = 0

Recursive functions

▶ In general, f is partial. But, if g is regular then f is total.

▶ A function is recursive if it can be obtained from the initial
functions by a finite number of applications of composition,
recursion and minimization over regular functions.

▶ A function is partial recursive if it can be obtained from the
initial functions by a finite number of applications of
composition, recursion and minimization.

▶ Example: Show that f (x) = x/2 is a partial recursive function
over N.

▶ Solution: Let g(x , y) = |2y − x | where 2y − x = 0 for some y
only when x is even. Let f1(x) = µy (|2y − x | = 0). Then
f1(x) is defined only for even values of x and is equal to x/2.
When x is odd, f1(x) is not defined f1(x) is partial recursive.
As f (x) = x/2 = f1(x) is a partial recursive function.

▶ Exercise: Show that f (x , y) = x2y4 + 7xy3 + 4y5 is primitive
recursive.

References

1. Mishra, K. L. P., and N. Chandrasekaran. ”Theory of
computer science: automata, languages and computation”.
PHI Learning Pvt. Ltd., 2006.

2. Hopcroft, John E., and Jefferey D. Ullman. ”Introduction to
Automata Theory, Languages, and Computation. Adison.”
(1979).

3. Cohen, Daniel IA. Introduction to computer theory. John
Wiley & Sons, 1996.

4. Martin, John C. Introduction to Languages and the Theory of
Computation. McGraw-Hill Higher Education, 2011.

5. Sipser, Michael. ”Introduction to the theory of computation”
Computer Science Series. Thomson Course Technology
(2006).

6. Linz, Peter, and Susan H. Rodger. An introduction to formal
languages and automata. Jones & Bartlett Learning, 2022.

	Introduction
	Preliminaries
	Mathematical Preliminaries
	Finite Automaton
	Non Deterministic Finite Automata
	Equivalence of DFA and NDFA
	Constructing required DFA
	Finite Automata with Output
	Transforming Mealy machine into Moore machine
	Transforming Moore machine into Mealy machine
	Minimization of Finite Automata
	Formal Grammar
	Chomsky Classification of Languages
	Regular Expression
	Regular Language
	Identities for Regular Expression
	NFA with null moves
	Automata and Regular Expression
	State Elimination method
	Elimination of moves
	Conversion of null moves NFA to DFA
	Arden's Theorem
	Conversion of RE to DFA
	Two way finite automata
	Pumping Lemma for Regular Sets
	CFG: Formal Definition
	Derivation and Syntax Trees
	Ambiguous Grammar
	Simplification Forms
	Properties of CFL
	Normal Forms (CNF and GNF)
	Pumping Lemma for Context Free Language
	Decision Algorithms
	Linear Grammar
	Pushdown Automata
	Relationship between PDA and CFL
	The Turing Machine Model
	Representation of Turing Machines
	Language acceptability of Turing Machine
	Design of TM
	Variation of TM
	Universal TM
	Church's Machine
	Recursive and Recursively Enumerable Language
	Unrestricted Grammars
	Context Sensitive Language
	Linear Bounded Automata
	Construction of Grammar Corresponding to TM
	Construction of Grammar Corresponding to LBA
	CYK Algorithm
	Turing machine halting Problem
	Post correspondence problems (PCP)
	Modified Post correspondence problems
	Partial and Total Functions
	Primitive Recursive functions
	Recursive functions
	References

